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Dynamics of the Deformable Aeroplane
Part I.-The Equations of Motion

Part II.-A Study of the Trim State and Longitudinal Stability
of the Slender Integrated Aeroplane Configuration

By R. D. AJILNE,

QurrN MARY COLLEGE, UNIVFRSIIY OF LONDON

Reports and Memnoranda No. 3345*

September, 1962

Part I.-The Equations of Motion
.Sumnary.

An integrated analytical treatment is presented \ hi.h deals Nith the equilibrium and stability of the flexible
aeroplane in flight. The analysis embodies those methods currently employed to investigate the behaviour of
the flexible aeroplane stemming on the one hand from the stability theor) of the rigid aeroplane and on the
other from conventional aeroelastic studies. The integrated treatment serves to clarify the regions of application
of these restricted methods.

In Part I the equations of motion for a flexible aeroplane are developed in as general a manner as possible.
In Part II the general analysis is applied to a detailed study of the equilibrium and stability of the slender,

integrated aeroplane configuration.

1. Introduction.

The effect of flexibility on the stability and control of aeroplanes is recognised as being of
paramount importance. Yet this problem tends to be treated either as a modification of rigid-aeroplane
stability theory or as an extension of the methods common to flutter analysis. In the first case the
rigid-aeroplane equations of motion are modified by the use of so-called 'modified derivatives'
which include an allowance only for the steady or equilibrium deformation of the aeroplane structure.
The flutter equations are extended to include small translation and rotatioa of the aoroplane as a
whole about a zero position: but the zero position can not, with the modification adopted, be a true . /

equilibrium state for the aeroplane in flight. Both these approaches are, to some extent, deficient in --
dealing with the general problem of the stability and control of the flexible aeroplane. l.

The advent of the slender, integrated aeroplane configuration %% hich is currently thought to be.

suitable for a supersonic transport demands the development of an analysis dealing with the tjot
dynamics of the deformable aeroplane in as fundamental a manner as posbible. Part I of this paper P .
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REPRODUCED FROM
BEST AVAILABLE COpy

11 an analysis in general terms: it is natural that the choice of an axis system for an
flight should be, in a generalised sense, body axes and a central consideration of the

e definition of body axes for a deformable aeroplane. Part II applies the general analysis
O igation of the trim states and the stability of these trim states for the slender, integrated

nfiguration: This type of aeroplane configuration is very different from the classical
ustrates well the extent to which overall aeroplane stability is inseparable from aeroplane

tations of Motion.

e Equations of M4Votion of a Deformable Body in the Absence of Kinematic Constraints.

1.1. Introduction.-The equations of motion are to be set up for a body which possesses,
- o an overall spatial motion, a local deformation motion due to its inherent flexibility, the

ole being subjected to gravitational (body) forces and such external forces as are caused
* he relative motion of the body surface through a fluid medium. In particular, the body

ternal kinematic constraints.
S-ed in all that follows that the relative displacement of any point of the body from the rr, :.

- ccupies in some assigned reference configuration is small in comparison with a typical >
' r dimension of the body: thus second and higher powers of the displacement are 0

his assumption is that usually made in the Classical Theory of Elasticity: it implies 1
M ain at any point is small and, in addition, that the relative rotation of any element is

consequence of these restrictions a set of linear relations connects the strain and M

t components at a point. It is not necessarily assumed that the relation between stress and o
near one.
of kinematic boundary conditions means that the Elastic Boundary Value Problem is the

U .roblem', any solution of which is arbitrary to the extent of a small rigid-body displacement
- The resolution of this arbitrariness will be discussed at length in connection with the
erence axes moving in a generalised sense with the body. However, it may be emphasised

t that the arbitrary nature of the Neumann Solution is quite inadequate to describe the
ion of the body because of its necessary smallness: indeed, any interpretation in this
ntially misleading.
ations of motion must be referred to inertial or space axes and for the purpose of
tability and control the motion of the earth may be neglected and 'earth' axes adopted.
s in the case of the motion of rigid bodies it is advantageous to interpose a set of axes
h 'the body and in a conventional sense the motion is then referred to body axes. In the
formable body the specification of such an axis system is not obvious or indeed unique;
on of this question is postponed for reasons which will become clear.
gly we shall refer to'body axes (origin 0) whose position and orientation are not specified
far as they lie always in the region of a set of axes positioned at a definite point and along

ections in the body in a reference configuration.
cification of this reference configuration is not unique hut, once chosen, it remains
, It may coincide, for example, with a particular equilibrium configuration of the body
'tUrally it will le taken to coincide with the body configration when completely free,
al or body forces. In the latter case it is then essentially an ideallsed assembly (if material
purely geometric sense.
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7. V1

Let the position vector of a general point of the body be r: let the position vector of the same point

in the reference configuration be r. then a displacement vector r' is defined by

r' =r-r (2.1, 1)

where, in accordance with the condition of smallness of the displacement,

r'2 < 12.

2.1.2. The linear and angular mnomenta.-Let a be the mass per unit volume at any point

and dV an element of volume. The linear momentum of the body is

M ( v dV (2.1,2)

where v is the velocity of the origin of the body axes relative to inertial axes and d/dt reprcsents time
rate of change with respect to inertial axes.

The corresponding angular momentum about the origin of the body axes is

t or x + dV. (2.1,3)

Let the angular velocity of the body axcs at a;uy instant be S and let the operator a/at represent

time rate of change with respect to an observer stationed in the body axes; then the operators

;/, 5+t %

are commutable.

The linear momentum {equation (2.1, 2)} may be written

M = Av + MS2 x ro + 92 x far'dV + a dV (2.1,4)
fV f I T

where ..

f °il1 -- ardV r

is the mass of the body and

1f r, rodV

is the positio-i vector of the centre of mass of the reference configuration.

The angular momentum {equation (2.1, 3)) may be written
" H = MJro, x v + (4,, + V')" -2 + Ir'

+ r'dV x v -+ aro x dV (2.1,5)

-j where

,0 a r)2 i[o1 - ro] d V

is the inertia tensor (or dyadic) for the reference configuration and

V= f [2r" r'I - (r'r + ror')] d V

represents (to first order in r') the addition to 'Do due to the relative deformation.

3
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2.1.3. Overall and elemental equations of motio.-''he equations of motion for the body

take the form of m o equations %N hich relate the o\ erall force and moment on the body to its motion
and in wvhich the internal reactions do not (xplicitl) appear and an equation \\ hich embodies the

conditions of equilibrium for the elements of the body.

Thus if F is the resultant force and L the resultant moment about the origin of the body axes of
the external (surface) tractions and g is the acceleration due to gravity then

dM
= F + Mag, (2.1,6)

dH
-d L-vxM+ ro,,+ ar'dVI xg (2.1,7)

are the overall equations of motion.

The equation of motion for an element of the body is

v + 7 g ) (2 .1, 8 ) ' -

x ithin V, where Z is the stress tensor. On the surface of the body the statical boundary condition is

that the surface stress components must be equivalent to the external surface traction t; thus on

the body surface S,
n - E ' (2.1,9)

where n is the outward normal. The overall equations of motion (2.1, 6) and (2.1, 7) may be

considered as necessary conditions for the consistency of equation (2.1, 8) and the statical boundary
condition (2.1, 9).

2.1.4. Specification of the body axes.-The detailed specification of the body axes may now

profitably be discussed. Let r', be a solution of equation (2.1, 8) satisfying (2.1, 9) then

= AR + A6 x ro + r',

where AR(t), AO(t) = 0(r') is also a solution where the rotation may be represented as a vector A0 by
virtue of its smallness.

Let A 0 be an axis system set up in the reference configuration by choosing some (material) point

as origin and a line of (material) points as an axis of orientation. Then if motion ensues at time to the

specification of the body axes (of a similar nature to the original) may formally be said to be specified
by a knowledge of AR and AO at any subsequent time t. For it must be noted that the origin of the - -

body axes will no longer necessarily be invested in a material point of the body nor N ili the axis of

orientation contain the initial material points. It need only be demonstrated that AR and AO may be
consistently specified in terms of a solution of (2.1, 8): in practice a knowledge of AR and AO is
not required directly as will be seen in the sequel.

Any number of ways of choosing the body axes exist but in practice three particular choices -. "

would seem to be worthy of discussion. Ek

(a) Attached Axes.
These axes are specified by the simple conditions that

AR = AO 0.
4 4
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In this case the origin of the body axes remains irn ested in one matcrial point of the bod) \ hie
an axis of orientation is tangent to the cur% e formed by the material pouint originall defining the
axis of orientation. For e' imple, in the case of Cartesian Axes the axis directions ma be the tangent,
normal and binormal to a curve of material points. Further, any set of axes which have a fixed
orientation to such a set of axes, are also Attached axes.

(b) Mean Axes.2, 3

These axes are chosen in such a A ay that, at every instant, the linear and angular momenta of the
relative motion with respect to the body axes are identically zero. Thus,

-f r'2 8r'2
a d = Oro x - dV 0

or

f a {AR + AO x r° + r'1}dV = const.

oro x (AR + A6 x ro + r'l} dV = const.I" I=10

where, for coincidence of the body axes and reference axis system Ao at time to the constants should
be taken to be zero. The latter equations are sufficient to determine AR, AD, thus,

MAR + AO x Mr0 = f ar',dV (2.1, 10a)

M11r0, x AR + AO • = j oro x r',dV. (2.1, 10b)
fV

In practice the specification that the deformation motion shall satisfy the conditions

f or'dV = 0 (2.1, l1a)
v

oro x r'dV = 0 (2.1, lib)

is equivalent to reference of the motion to Mean Axes. Then equations (2.1, 4) and (2.1, 5) respectively
take the forms

M = i~v i- J1182 x r,

H = VJ/ro, x v + (4)o+ 4') 62.

The use of Mean Axes effectively reduces the inertial coupling between the overall and relative

deformation motions.
It may be noted that if the origin of the reference axis system A0 is chosen to be the centre of

mass of the reference configuration then because of condition (2.1, 1 la) the origin is always at the
centre of mass.

(c) Principal Axes.
The basic requirement in this case is that the tensor 4)' should be diagonal and this is most

conveniently coupled %Nith the condition (2.1, lla) w~hich ensures that r'a is zero. The equations

5
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determining AR and AO are complicated but in the case x\ hen the origin of the reference axis system
Ao is chosen so that ro, 0 they simplify to

MAR _ r',dV (2.1, 1Oa)

and the three scalar equations,

. ', k = k ,. i=i'.j=0 (2.1, 12)
where i, j, It are three orthogonal unit vectors parallel to the body axes and

'= f u [2ro' r'.1 - (r'2r(, + ror'2)] d

= a [2ro • r'I - (r'lr o + ror')] dIl" -

T t saqi ( AO x o [ro2' - roro] dV - c [r02 + r0ro] dV x A0.

%,*. The three scalar equations (2.1, 12) are sufficient to determine the components of AO.
Principal Axes in this sense will most often be combined with the choice of Principal Axes in the

usual geometric sense situated at the centre of mass for the reference axis system A0. The body axes
are then always Principal Axes situated at the centre of mass of the deformed body. The conditions

_ (2.1, 11 b) and (2.1, 12) imposed on r' by the choice respectively of Mean Axes or Principal Axes are
more clearly illustrated by writing these conditions in terms of Cartesian components. Thus, with

ro= x0i + yoj + z0k,
r' = x'i + yj + z'k

where, as before, i,j, k are a unit (body) triad, conditions (2.1, llb) are

"(yo'-zoy')dV a (zo'-Xoz')dV = v(xoy'-yox')dV 0 (2.1, 13)

while conditions (2.1, 12) become
.(yoz'+ff + 0(xoy.+yox,)dV 0. (2.1,14)

For shapes which are typical of aeroplanes in which transverse displacement relative to a plane or
line contributes the main deformation the conditions (2.1, 13) and (2.1, 14) may be identical. For
example, let the median plane of a plate-like structure be flat in the reference configuration and let a
Cartesian axis system 0, x, y, z be chosen to have the (x, y) plane as the median plane. Then if
-'(vo, yo) is the transverse displacement component and it is assumed that terms of 0 (-ox , aremuch smaller than terms of 0 (z'xo, '; ) then since the last integral vanishes identically conditions
(2.1, 13) and (2.1, 14) are identical. This latter assumption is effectively the neglect of rotatory inertia.

-: 2.1.5. Variationalform of the elementalequation ofm otion.-Having discussed the question
a_ of the specification and cho;ce of the body axes we may return to further consideration of the

equations of motion, in particular the differential equation (2.1, 8) and boundary condition (2.1, 9).
These may conveniently be combined in a single variational equation of motion. Furthermore, the 'V
variational form of the elemental equation of motion is by far the most fertile for the deduction of
approximate representations of the flexibility of the body.

6
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Let the path of the motion over a fixed, arbitrary time interval t, < t < t., be Naried from the

actual path by the xirtual displacement Sr', then since the forces on an element of the body are, at
every instant, in equilibrium (ox er the actual path) then to a first-order x ariation in the path no x ork
is performed by these forces through the N irtual displacement. Thus, integrating o% er cx cry element

and over the time interval tj < t < t.,

f12l [a { (d + d - g} - V Ej Srddt =0. (2.1, 15)

Transforming the third term by the Di\ergence Theorem, using the boundary condition (2.1, 9)

and noting that
E: Vr' = E: (VSr'+ Sr'V) = E : 5T

where T is the strain tensor then, finally, the variational equation of motion is

f12 (J' [ v (V+ d) -g .Sr'+ .:Sw dV- d '  dt = 0. (2.1,16)

The x ariation Sr' is arbitrary except that it must satisfy the same (quasi-kinematic) conditions as

are satisfied by r' consequent upon the choice of a particular type of body axes. Thus, in particular,

the variational modes 8r' = const. and r' = const. x r. are not admissible under any choice of
body axes so that equation (2.1, 16) does not contain equations (2.1, 6) and (2.1, 7) as special cases.
Similarly equation (2.1, 8) and any differential equation (relating to some approximate type of
analysis) deduced from (2.1, 16) may not have as a solution const.1 + const., x ro.

To the equations of motion for the aeroplane may be added equations representing controi systems

incorporating serx o-mechanisms. With !arge controls it may be important to include the inertia of

the control and in that case a part of r' may be allotted to control deflection; a part of the surtace
loading 4 x ill of course bc associated "x ith control deflection. These additional equations of motion

will embody fin place of the variation in strain energy integral of equation (2.1, 16)1 the Transfer
Function of the control as related to the demand and to the ox erall and deformation motions of the
aeroplane.

2.1.6. Attitude of the body axes in space.-The presence of the gravitational force in the
equations of motion requires that reference be made to the attitude of the body axes in snace since

this force is fixed in direction relative to 'earth' axes.

It is necessary to adopt a scheme xxhereby a sequence of rotations xxill, from a refclalce attitude,

lead uniquely to a final attitude: the follox ing scheme is usually adopted. In the rcfcrence position,

,axis 0, 3 of the (inertial) triad 0, 1, 2, 3 is % ertically dox% nx ard; taking all rotations to be right-handed
the final attitude is obtained from the reference by the sequence of rotations 03, 02, 0, each rotation

being about the carried position of the relevant axis. Thus, using the abbreviatiens cosq, = ci

sin = si the orthogonal matrix of direction cosines6 for the final attitude is

C2 C3  C2S3  ,S 2

3[1] = -s + sIs 2c3 , cIc3 + s~ssA, sc., . (2.J, 17)

%i sIs3 + Cs.c3, - SIC3 + ClS2S3 , cIC_.

7
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Then if tLe column (v, represents the components of a x ector v in the fixed (Nei tical) axis s. tem.
and {viM} its components in the moving (body) axis system,

{v }=[1] lt.'4. (2. 1, 18) -•q18)O

A kinematic relation is also required bet\\een the components of -1 referred to the bod) axes,

say (p, q, r), and the and their time rates of change, .. The required relation is

i 0 Fl- s 2[P1-Si So,

q = cO sc2 (2.1, 19)
SI C

I Lo- I 1 c,

2.2. The Deviant Equations of Motion. L0A

2.2.1. Introduction.--A consideration of the bcha iour of an aeroplane in flight N ill deal
essertially with three distinct problems:

(1) equilibrium of a steady-flight state,

(2) the stability of such steady-flight states,

(3) the response of the aeroplane to controls or gusts and behaviour in unsteady manoeuvres tN
(rapidly rolling flight, rapid pull-outs, etc.).

Of these three problems the last is very cons'derably more difficult than the first two. The problem
of equilibrium by virtue of its definition is independent of time but it may often be non-linear in
character. The stability of such equilibrium may, by virtue of the stability theory due to Liapunov 7,, -

be tested by considering the stability of a linearised system having a small disturbed motion about

the position of equilibrium. If the system returns to its equilibrium position under perturbations of

sufficiently small magnitude, the equilibrium position is said to be stable. If it does so under all '"
possible perturbations of arbitrary magnitude, the equilibrium position is said to be totally stable.
The linear approximation is not a test for total stability.

The third problem will generally be non-linear except N~hen the control forces or external
disturbances are restricted to be small enough to permit linearisation of the equations of motion as
for stability: in this case the stability and response problems are solutions of the homogeneous and
inhomogeneous forms of the same set of equations.

2.2.2. The steady state.--Without discussing in detail the problem of equilibrium

(see Part II) we may consider the nature of possible steady-flight states. To do this it need only be
recalled that the aerodynamic forces are not dependent on the position or attitude of the aeroplane
in space while the gravitational force is of constant magnitude and direction with respect to 'earth'
axes.

The most general steady state in a homogeneous atmosphere clearly consists in v = const. and
r' 0 f(t) while S2 may be a vertically directed vector of constant magnitude; that is, a spiralling

motion at constant speed. When the atmosphere is recognised to be Nertically inhemogeneous then
. .v must be a horizontally directed vector.

%8
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1 The most usual steady-flight case is that of rectilinear flight (62 = 0) for which the equations of
, ~equilibrium take the forms •"-

F, + 111g1 = 0

L, + Mr0 , x g, = 0

Ej: S'dV - g, f ar'dV - j - Sr'(dS 0 (2.2, 1)

where the suffix 1 refers to the steidy state.,.
These equations determine, for given control forces or settings, the speed of flight, the attitude of

the aeroplane and the form of the deformation: alternatiN ely, N% hen the speed (and altitude) is specified,
the required control forces and the resulting attitude and deformation may be determined (see Part II).

Upon solving the equilibrium problem any equilibrium state ro0 = ro + r', may be chosen as a -
new reference configuration in the sense of Section 2.1.1.

For some purposes it may be possible to neglect gravitational forces. This arises when the
(integrated) inertial forces in the steady state are large such as in a rapid pull-out or rapidly roiling
motions. In this case the attitude of the aeroplane in space is immaterial and the most general steady
state is v = const., S2 = const. and r' # f(t).

2.2.3. The form of the deviant equations of motion.-The deviant equations of !notion
relate to the disturbed motion of the aeroplane relative to a specified steady or equilibrium state and
can only be constructed once the relevant equilibrium state has been solved. The variables in the .
deviant equations of motion are so defined that when they are all identically zero the equilibrium
state is recovered.

Using the suffix 1 as in Section 2.2.2 to mean an equilibrium state then we define the deviant
variables (without suffix) by the relations

V, = V, + V

at 92 (2.2, 2)

= (r0 +r'l) + r'

where the suffix t indicates that the variables refer to the total motion. Similarly, the forces are given
by the relations

Ft = FI(v,, r'1 ) + F(v1, r',, v, Q", r')

L, = L,(v,, r',) + L(v,, r'j, v, S2, r') (2.2, 3)

4), = %bi(v,, r',) + t4(v,, r'j, v, 62, r')
and

g1 = g1 + g. (2.2, 4)

Also, the total attitude of the body axes is given by the rotations Oa followed by the rotation- 01 (the
deviant rotations). The deviations O do not have the same meaning as the rotations Oa for the
rotations 01 are carried out about the axis directions of the equilibrium state 1 whereas the rotations

Oil were. carried out about the 'vertical' axis system fixed in spatial orientation. Thus if {vi,,}

9
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, -1

and {(v III are the components of a vector in the 'earth' and equilibrium axes respectixely and fv .f,
its components in the moving axes then

(Vi} =[1]{Z'iMl = [1] [l]h {V..,}

and, in particular, =

{vi.,,} - {vi.1t11 = (U] - 1) [I] {vjf}. (2.2, 5)

The deviant equations of motion are obtained by substituting (2.2, 2), (2.2, 3) and (2.2, 4) in the
equations of motion (2.1, 6), (2.1, 7) and (2.1, 16) and using the equations of equilibrium (2.2, 1).
The deviant equations of motion are written out in full in Appendix I.

2.2.4. The deviant equations to first order in the velocities.-The main step in the linearisation
of the deviant equations is to retain only those terms %N hich are of the first order NN hen v, n (and, of
course, r') are treated as small quantities. It is shown in Ref. 8 that N hen v, S2 and r' are all small
then the aerodynamic forces are linear (integral or differential) functions of v, 62 and r' (the
functional forms are dependent on the actual equilibrium configuration under consideration). This
degree of linearisation is thus sufficient to make the deN iant equations linear except for those terms
which involve the gravitational force and are dependent on the attitude of the aeroplane in space.

Thus for those problems in which gravity may be neglected the equations ale already linear. For
those in which gravity cannot be ignored a further linearisation is required in rotational attitude: no
restriction is required on the displacement of the origin unless the atmosphere is inhomogeneous. 0

2.2.5. Non-dimnensionalform of the deviant equations to first order in v and n.-The deviant
equations are rendered non-dimensional by choosing

(a) pV"1
2 as the unit of force,

(b) 1, a typical overall dimension of the aeroplane, as the unit of length, and

(c) I1V/ as the unit of time,

where

Then the non-dimensional deviant equations of motion, to first order in v, S2 and r' are (see
Appendix 1)

A ox * x v;* a2*; * . O-8L dV = - F* + M'g* (2.2, 6a)

/]/*o*x+ I, X0 • + M'*x (jl "x v*)

I t * f
+ Vr*  and* L*g

S+ O*x = +Mroiq*x + fur'*dV: x (g + g*) (2.2, 6b)

a*
aar'

+ + " v, a*ro* x dV* . + 0*(r 6c)

f. .r'*dS*}

10
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where i""'
r' dS (l" " ''r° L = ,.S*= d VoA = -[ - , a* - ' -- "

o. ~ =* 13w 1a, Y' ':'v

b ... E.*. . F* F... L* L (2.2, 7)' P V-' p Vp- - " 3

In tihe above equations rol has been replaced by ro in those terms Ni hich NN ould otherN ise involve :i:"
products of O(r'"), O(v2-), etc. ....

The kinematic relations (2.1, 19) apply wvith (p, q, r) the deviant angular %elocities, the j the , ''.
'carried axis' angular velocities about the equilibrium axes and the Oj the rotations from the" ""
steady-state orientation..

2.2.6. The deviant equations to first order it attitude.-Tle deviant equations are fully "'-

linearised by taking the deviant rotations Oil to be small. The form of the equations (2.2, 6) is ..
unaltered except for those terms involvng g. 'Fie relations (2.1, 19) and (2.2, 5) are linearised, " €
the rotations r becoming the components of a vector thus,

= 21 (2.2,S8).-.,

and ""-

{V i ,,, - {V i;1 }1 = - 0 3 0 0 1 [I , (V ill . (2 .2 , 9 ), --' - =
2 -01 0-

in (2.2, 9) the antisymmetric matrix is equivalent to a vector multiplication by (P. "

2.3. The Forces on the Aeroplane. .
2.3. 1. The gravitational force.-ln the deviant equations of motion the comp~onents of '-

the vector g {equation (2.2, 4)1 are given by an application of equation (2.2, 5), thus, .,.

g = ([l] -l)gl (2.3, 1) ,-"

so that, to first order in the deviant rotations Oi,....g-=OX g. (2.3,2)

2.3.2. The propulsive force. -Thc( propulsive force \i generally have a fixed direction "":
relative to tile power unit but its direction may vary relative to the body axes by an angle which"-,:
will be of the same order of smallness as r'. The magnitude of the force %hile being controllable %.%,
will also change with the motion of the aeroplane and in particular N;th changes in forward speed. inol-

2.3.3. The aerodynamiforces.-The surface traction q due to the motion of the a troplne
through the air is obviously extremely dificult to specify for a general motion. It ill depend upon

the whole history of the motion (due to wake effects): te ressure and shears at any point on the
surface will depend onbem in the ed thole motion of eery part of the aroplane.

'PS", X ' N , ' k ,,,.kZ' .-.,,' . . .,- "-:,'. '.- [-. l... ,-, .'- .'.,- , .-..... .. . , .. , ". ... *. ",.> ...I I
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In addition, the type of flo% regime encountered m ill depend on the ariation, throughout the
motion, in the values of a typical Reynolds number and Mach numbei for the aeroplane.

For the dei int motion relati% c to a stead) -flight state the appropriate Re) nulds number ma) be
taken to be that of the steady state but the variation in the Mach number may still require to be
taken into account partic.lar!y in the transonic rcgime.

-. 'The problk n becomes tractable \v hen the de iant motion is linearised in the Nelocities v and 62.
The first-order deviant aerody namic forces ma) then be said to be gi\ en b) a sum of the follo\N ing
contributions:

(1) the (first-order) change in the (unit-order) equilibrium forces due to (first-orde-) change in
speed treating the equilibrium stress coefficients as constant,

(2) the (first-order) change in the directions of the (unit-order) overall equilibrium force
coefficients due to (first-order) rotation of the resultant velocity vector relative to the body
axes,

(3) the (first order) change in th,. (unit-order) equilibiium stress coefficients due to (first-order)
change in the Mach number of the equilibrium state and

(4) thie (first-order) unsteady pressure field generated by the (first-order) motion of the
a.,oplane when changes in Mach number are ignored: this component will generally be
treated on an inviscid-flow basis. It is shown in Ref. 8 that this pressure field may be
derived from the standard linearised potential unsteady-flow theory when due allowance
is made for the difference between body axes as used here and the steadily translating axes
employed in the standard theory.

2.4. Representation of the Aeroplane Structure.
2.4.1. Introduction.-The equations of motion (2.1, 6), (2.1, 7) and (2.1, 16) are not, in

themselves, sufficient for the solution of the aeroplane motion even when the surface tractions are
completely specified as functions of the surface motion. The additional equations required are:

(1) the stress-strain relation,
(2) the equations of strain compatibility.

In effect, in order to proceed with a solution of the motion it is necessary to solve the Elastic
Boundary Value problem for the aeroplane structure in terms of a general surface loading. When it
is assumed that the stress instantaneously attains its equilibrium value consequent upon a rapid
change in strain then the elastic problem is effectively ieduced to the solution of the aeroplane
structure under general steady surface and body forces when the inertia forces are represented by
their instantaneous values (d'Alembert's Principle). Hoxe~er, the assumption of an instantaneous
(conservative) stress-strain relation may not be justified in application to unsteady aeroelastic
problems since it cannot allow for internal damping. the solution of the elastic problem if this
assumption is abandoned becomes difficult and invohes the history of the motion. A theoretical
treatment of internal damping in elasticity is given in Ref. 9.

In what follows here it will be assumed that the stress-strain law is the Generalised Hooke's
Law. the modification of the equations of motion consequent upon the presence of structural damping
may then be made for those cases co-ered in Ref. 9. as a consequence of assuming an instantaneous
stress-strain relation there is no need to retain the integration with respect to time in the Nariational
equation of motion, (2.1, 16).
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2.4.2. Suitable forms for the displacement field.-On the aeroelastic scale,* the classical
aeroplane consists of an assembly of beam-like and plate-like structures, N% hlle the modern integrated
aeroplane may consist largely of a single plate-like structure. More particularil), from an aeroelastic
point of view the deformations of interest are solely those at the surface, the internal displacement
field being of secondary importance.

As a consequence wide use is made of the simple bending theory of plates and the simple bending
and torsion theories of beams sometimes N ith approximate corrections for shear deformation. When
the simple theories of bending are inapplicable then methods of structural analysis 13, 

11 are used
based cn the consistent assembly (by displacement or force compatibility) of all the internal
elements of the structure and the external (point) force system. Ne- ertheless, in this case also the
part of the solution of interest to the aeroelastician is that which relates the 'transverse surface
displacements' of the structure at a finite number of points to the loads at these points.

Having synthesised the structure in some way then two main methods are available for
representing the characteristics of the structure in the equations of motion:

(a) in the case when beam or plate theory is applicable resort may be made to a Rayleigh-Ritz
analysis thereby expressing the surface displacement in terms of a series of weighted
co-ordinate functions; this approach stems directly from the variational equation of motion
(2.1, 16);

(b) the Green's or Influence Function for beam or plate may be calculated or for more general
structures a set of influence coefficients and solution of the equations of motion obtained
by numerical integration (collocation); the variational equation (2.1, 16) yields the integral
equation of motion directly by the simple device of taking the virtual displacement to be a
(small) arbitrary constant times the appropriate influence function when the variation in
strain-energy integral becomes, by definition, the displacement at the general point.

In both instances the result is to replace the variational equation by a finite set of ordinary
differential equations with time as the independent variable.

2.4.3. Application of the Rayleigh-Ritzpiocedure.-The method is extremely well known
and the only point of interest here refers to the choice of body axes. Thus whatever axes are used
each co-ordinate function should satisfy the appropriate axes conditions {e.g. equations (2.1, lla),
(2.1, llb) for Mean Axes). When in-vacuo vibration modes (normal modes) are used as co-ordinate
functions they will already satisfy the mean-axes conditions. It is commonly asserted, for example,
that normal modes are 'orthogonal to rigid-body modes' as if this were a unique property of normal
modes whereas in fact it is a consequence of referring the vibration modes to mean body axes:
so-called arbitrary modes can always be chosen to be 'orthogonal to rigid-body modes' simply by
applying the conditions (2.1, Ila), (2.1, 11b). The role of the overall body motions in vibration studies
is discussed in Appendix II.

2.4.4. Application of the Influence Function.-In like manner our main interest in discussing
the application of the method (b) above is in defining the Influence Function for a structure w hich
is not subject to kinematic constraints, in conjunction with the choice of body axes.

* Omitting local aeroelastic effects such as panel flutter.
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The following discussion N% ill naturall) also haN e reference to those cases x lhre a set of influence
• .'. ¢ coefficients rather than an Influence Function is awailable but some remarks are added at the end

-. '~' which refer more particularily to these cases.
The existence and nature of Influence Functions"' 11 for plates and beams is NN ell knoNN n so that

it will be convenient here to pursue the discussion x\ ith reference to the biniple bending of beans,
corresponding results for other cases are obvious.

At the outset, in defining the Influence Function for a beam, it is necessar) to consider the beam
to have sufficient kinematic constraint to pre ent bodily motion and, for our purposes, it is
convenient but not essential to consider a cantile er beam since conditions at the free cud alread)

* satisfy the requirements regarding lack of kinematic constraint.
Thus, let

d 2  d-w.
E<x< (2.4,.1)

be the equation of the loaded beam subject to the boundary conditions

dw
TV= Oat x = 0,

do d dow

El =0 at x= 1. (2.4, 2)

A formal solution of the differential equation and boundary conditions is given by a rredholm
Integral Equation 2, thus,

w(x) = G(x, e)p(6)de (2.4, 3)fo

where the Influence Function G(x, e) satisfies the differential equation

d (E. = (2.4,4)

_ being the Dirac Function, and the boundary cond!itions

dG
G= = 0 at x= 0,

. d2G d doG
Eld--0 = - 0 at x =l. (2.4,5)

d.X2  dx d 2

- ~A~ ;s a conscqucncc of the fact that (,I-'dL.() (EI(d2 'd.,2 ) is a self-adjoint differential operator, the
function G(x, ) is symmetrical.

In the case a beam without kinematic constraint and in which the ends are unloaded it is a
necessary condition for the consistency of the differential equation (2.4, 1) and the boundary
conditions

d2w d do-w)
E I -2 E = 0 at x =0, 1 (2.4,6)

that
ftp(x) = f xp(x)dx = 0. (2.4, 7)

:-, ~14
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Since these conditions Nxill be sitisfied by an) real motion inN oh ing the beam (b) N irtue of the
application of the oxcrall equations of motion) xxe ma), for the purpl,'e of defining an Influclicc

-, Function, equilibrate the unit load 8(x - ) by any conx enient loading s)stem proN ided only that it
alone cannot satisfy (2.4, 7). This arbitrary balancing system N% ill clearly N anibh from any real
solhition by virtue of the satisfaction of the oxerall equations of motion (2.1, 6), (2.1, 7). A cunx cnicnt

N' balancing system is the loading a + bx where a, b satisfy the equations

f {8(.- - (a+ bx))dx =J x {8(x-) - (a + bx)} dx = 0 (2.4,8)
0 f 0

giving

2 6
a(e) T (21- 3e), b(e) = - 1).

It is easily verified that a + bx by itself cannot satisfy equations (2.4, 7) unless a = b 0.
The Influence Function G'(x, ) for the beam without kinematic constraint is then

G'(x, G) = C(x, ) - G(x, ')[a( ) + b(e)'] de'. (2.4, 9)

The function G'(x, ) is not symmetrical. The function G'(x, ) obviously satisfies the differential
equation

d2 Id 2G'\(El = (x - (a+bx) (2.4, 10)"-s ?,x2  d.,: '.

and the b n ary conditions (2.4, 6) with G' written for w.
As it haj.- the function G' will still satisfy the conditions G' dG'/dx = 0 at x = 0 but

these conditions are no longer necessary. In fact, G' is, for fixed e, arbitrary up to a small rigid-body %

displacement 'so that, in general,

G'(x, )=G(, ) G(x, e') [a + be'] de' + A(e) + B(e)x (2.4, 11)

In the c!text of the equations of motion of this beam the functions A and B are determined by the

choice of'body axes. Thus, for attached axes A = B 0 while for mean axes

f-m(x)G'(x, e)d= m(x)xG'(x, e)dx = 0 (2.4,12)

where m(x) is the mass per unit length of the beam: these two conditions yield simultaneous
equations for A(e) and B(6) which are alxways consistent. There is, of course, no need to choose as
origin of co-ordinates one end of the beam but should an intermediate point be husen then G' N% ill
be an amalgam of two abutting cantilexer influence functions, the application of the coaditions
(2.4, 8) (embodied in the balancing load system) ensures continuit) of bhear and moment bct cen
the parts of the beam meeting at the origin. For example, in a conk entional aeroplane the origin x% ill
generally be in the region Nhere the fore and aft fuselage beams and port and starboard xxing
beams meet.

15



By choosing the centre of mass as origin an alternati\ e balancing s tem nay be employed vx hich is

particularily convenient when also mean axes are used. This system is

)a(e')(x) + b(f)xm(x)

and, as before, it is easily verified that this system alone cannot satisfy (2.4, 7). The equations

(2.4, 7) lead to

1

upon using the fact that

f (x)xdx = 0

where 31 is the mass of the beam and k, the radius of gyration about the centre of mass. When the

mean-axes conditions are used to determine A(6) and B(e) the resulting influence function is,

conveniently, symmetrical. Other forms of balancing systems may be ad% antageous in specific cases:

>1' the extension to two and three dimensions is obvious.
In those cases where a matrix of influence coefficients represents the structure then the structure

will have been assumed to have sufficient kinematic constraints to prevent bodily motion: the

foregoing integral operations for deriving the 'unrestrained' influence function may then be
interpreted suitably as matrix multiplications preferably with the addition of a matrix which

represents a consistent set of integrating weighting numbers.
The matrix of influence coefficients for an unrestrained structure is necessarily singular. In fact,

if this matrix is of order in then its rank is (m -n) where n is the number of necessary external

equilibrium relations to be satisfied. As an illustration consider a beam deflecting in a principal
plane: in this case there are two necessary external equilibrium relations, namely that overall force
and moment in the principal plane should be zero.

Let G be the matrix of influence coefficients for the beam under (rn-l) point loads {p} when the
beam is suitably constrained. Again, the manner of constraint is arbitrary but we choose the
cantilever as being most convenient. Then if the (m - 1) deflections at the load stations are {w},

{w} = G{p}: (2.4, 13)

the built-in end is not included as a point-direction. To construct the influence matrix for the
unrestrained beam we proceed as for the influence function but first include the rout as a station by
writing*[1 1,.?w0 0 toy 0

"0 {0}I p0 (2.4, 14)
: {w} L{01 C p}

where w0 and Po are the displacement and (point) load at the root station. The balancing load is
again taken as A,1) + Bj{x) where A, and B, are given by the overall equilibrium equations

I - f1)'{1)A - {l}'{x)Bj = 0

x. - {x}'(ljA, {..'{xjB, = 0, j = 0 to m. (2.4, 15)

16
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The matrix G' is given by {cf. equation (2.4, 9)}

G' } - {A,1} + Bjfxj1' (2.4, 16)
0o G 0o G

and clearly takes the form ro {o}']
G' =(2.4, 17a)

{ 21} G..J
finalty,

L~1= ' [j.(2.4, 1b1W UP}

That G' (of order m) is of rank (m - 2) ma) be demonstrated b) noting that for the loading systems

P 1 PO 0

- 1=11 and =

then [W] Lpdo.
-%\0.

Thus the columns of G' are connected by twN o linear relations, that is, the rank of G' is (m - 2). In

addition since
- {0 and {x}'{p 0

for all a, fP when the loading system p, is self-equilibrating we ma) add to G' the arbitrary columns
a{1} and P(x). Similar results follow for other balancing load systems.

3. A Discussion of the Equations of Motion with Reference to Current Methods of Investigating
Aeroplane Stability.

This discussion relates the foregoing general analysis to the methods currently used to estimate

the static ,nd dynamic stability of flexible aeroplanes. Emphasis is laid on the estimation of the
stability of the trimmed, level-flight state.

Broadly speaking, current methods for dealing with these problems fall into two t)pes, ont, an
extension of the classical flutter analysis, the other an extension of classical, rigid-aeroplane stability.

The slender integrated configuration differs considerably in la) out from the classical aeroplane

and it is by no means obvious that behaviour kno, n to be typical of classical aircraft will apply
to this configuration. Here, attention is draw n to some of the points over which some doubt may

arise, while in Part II this type of configuration is dealt with in some detail.

3.2. A Discussion of Cuirent Methods.
0 3.2.1. Inchsion of the 'rigid-body modes' in flutter analyses".-When, in addition to the

assumption of small change in attitude of the aeroplane, it is also assumed that the displacement

of any poiat of the aeroplane from a rectilinear flight path is ,mail then the equations of motion ma)

be constructed so as to refer the motion to steadily translating (i.e. Ncwtonian) axcs. A procedure

17
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of this type is usually followed in investigations of the flutter of aeroplanes including the so-called
'rigid-body modes' (of pitch and vertical translation, for example, in the symmetrical case).

The chief drawback of this approach is that changes in forward speed must be excluded from the
deviant equations of motion in order to eliminate aeroplane motions which imply dc iat;ons from a
rectilinear flight path which are many times larger than a typical aeroplane reference length (motions
of phugoid type). The result of this is to suppress any reference in the deviant equations of motion
to the actual equilibrium configuration unde, consideration: the trim speed is irrelevant except in
so fat as it is implicitly present in the ratio of a typical structural stiffness to a typical dynamic
pressure. In practice, in these cases it is usual to imagine an 'equilibrium state' in which all forces
both elastic and aerodynamic are zero: weight is necessarily ignored.

'.1,

'-I With the advent of the integrated configuration it is felt that stability investigations should
properly include the full overall motion of the aeroplane. The deviant equations of motion then yield
information relating to the static stability of the aeroplane whereas the roots of lowest frequency
for the abbreviated equations yield information about a mode which often resembles the short-period
motion of a rigid aeroplane: whenever this mode shows a 'static' instability the neglect of change in
forward speed is not justifiable.

3.2.2. The method of modified derivatives16,4.- Until fairly recently the approach used in
aeroplane stability and response calculations which take account of flexibility has been based on the
idea of frequency-separated systems. The method is essentially a modification of the rigid-aeroplane
equations of motion and quasi-steady aerodynamic forces are used based on the assumption that, for
the modes of interest, the frequency parameter will be low. The number of equations of motion
remains unaltered but the lowest-order coefficients are modified by an allowance for flexibility, such
allowance being based on an equilibrium or steady-deformation analysis of the aeroplane structure
(e.g. interia forces are neglected). Practically speaking, this approach is applicable whenever the
typical overall-motion frequencies are much smaller than the lower typical vibration natural
frequencies of thc structure. But the vibration frequencies of interest are those of the aeroplane in
flight and these frequencies may depart considerably from their 'still-air' values: under such

conditions the principle of frequency separation may often fail and the number of equations of
motion should be increased.

Further, in calculating modified derivatives it is usmal to imagine the major parts of the aeroplane
to be kinematically constrained (i.e. built-in) at various points. For the classical layout this procedure
leads to modified derivatives which are physically meaningful but it would not be an exaggeration
to say that the concept of the modified derivative as applizd to the integrated configuration is
vitiated by the lack of obvious physical meaning to be attached to such derivatives.

The pitfalls associated with the application of kinematic constraint of any kind to the slender

configuration are discussed in Ref. 15.

1'
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APPENDIX I

The Deviant Equations of Motion

M + 2 x (vi +v)j + Tx [lMrig + f 1, r'dj

+ 2x(2x ilr 01  Vard] 262 x f a dV+

a2r
+ f ~~dVF +Mg.

[M.,+ f or'd V] x 'v+ (4,,,4) +

at%

+ [Mr,,, + f or'd V] x [2x (v,+v)]

art a2r'
+Qx (faro x - dV + raro x

(fV at / j

L + Mr 1 ,, x g + J r'd V x (g, +g)

f12 a 1
+ 2x (V1+v Ja~r'dV±J+oa-- 3r'dV +

+ 2 -ar x Sr'dV - o (r01 ±+r') x Sr'dV -
flt Tt .,.

f a. Jf(r0 1 ±+r') -Sr'I - (r0 1±+r')8r'] dV. - 2 -
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- APPENDIX II

Motion under no Forces-Free Vibration

In the usual approach to the free vibration of unrestrained structures the motion is referred
directly to Newtonian Axes with the result that bodily motion may only be allow\ed for x ithin the
restrictions of small overall displacement and rotation. O erall equations of equilibrium are then
applied which lead to conditions on the resulting motion N hich are identical to the mean-axes
conditions (2.1, l1a), (2.1, llb). The result is to refer the motion to mean axes which are at rest
and are therefore, ipso facto, Newtonian Axes.

However, there is no need to assume that the mean axes are at rest and more general motions
exist which satisfy the equations of motion w hen no extern-l forces act on the system. Of all these
general motions only that involving steady, non-rotating translation (,r = const., 62 = 0) of the
mean axes will yield what is normally referred to as free-vibration modes.

But above all it should be noted that the equations of motion w hen no external forces act contain
no reference to position or orientation in space so that these are, at all times, arbitrary and without
limit. This conclusion is quite outside the scope of the solution, const.1 + const.2 x r0 associated
with the Neumann Problem in elasticity.

Finally, while it is certainly convenient to refer vibration motion to mean axes it is not essential:
the contributions of o erall and deformation motions will merely be altered to yield the same
total motion.
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Part II.-A Study of the Trim State and Longitudinal Stability

of the Slender Integrated Aeroplane Configuration
Suiniary.

The general analysis developed in l'irt I is applied to the calculation of the equilibriun states and the
longitudinal stability of such equilibrium states for the slendei, integrated aeroplane configuration.

The slender configuration is treated essentially as haxing only longitudinal flexibilitv but an extension to
include spanwise flexibility is included.

Slender-wing theory is employed both in the trim state and in the de\ iant equations of motion to give the
aerodynamic loading.

The metho 1 of solution of the equations of equilibrium and t!,e de% iant equations of motion is by a collocation
procedure well suited to digital computation.

A simple numerical example is presented to illustrate the application of the analysis.

1. Introduction.
In this Part the general analysis of Part I is applied to the estimation of the stability of the

symmetric motion of a slender flexible flying wxihg this being a model of the slender integrated type
of aeroplane configuration which may proxe suitable as a supersonic transport cruising in the
Mach number range 1 8 to 2.2 or thereabouts.

Before the stability of the motion relative to a specified trimmed state can be studied the trimmed
state itself must be determined at all airspeeds so that the calculation of this steady state forms an

integral part of the following analysis.

The trimmed state is taken as level trimmed flight and the atmosphere is treated as being
homogeneous from the point of view of the deviant motion.

The main interest is in the stability of the aeroplane as a whole and not in flutter as such. Thus
only those modes of motion having significant contributions from overall body motion are of direct

,, Sinterest. Hence the slender wing is treated essentially as a flying beam bending longitudinally and

having rigid spanwise sections but the extension of the analysis to include spanwise flexibility
is discussed.

Linearised slender-wing theory is used in setting up the deviant equations of motion and the
equations for the trim state. However, the aerodynamic theory used in determining the trim state
need not be identical to that used to obtain the deviant forces and may allow for non-linearity. But
it should be borne in mind that since the relative deformation is assumed to be small the change
in the local angle of incidence over the wing surface due to flexibility will also be small., hence if
a non-linear aerodynamic theory is to be used it should take the form of a suitable Taylor Expansion
in the relative deformation about a mean overall incidence.

The actuai method of solution of both the deviant equations of motion and the equations of
equilibrium is by collocation. That is, the variational equation of motion is satisfied at only a finite
number of points, in this case distributed along the wing root chord. By this means the continuous
system is reduced to one having a finite number of degrees of freedom and the usual methods of
solution are available. In deriving the deviant equations of motion and equations of equilibrium for
this equivalent dynamical system it will be seen that the only numerical technique required
throughout is that of numerical integration.
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An idealised point force is supposed to act at the trailing edge of the wing in order to be able to

trim the aeioplane. This ,ontrol force is assumed to be infinitely disposable and no attempt is made
to elucidate its origin but it is a close representation of a flap-type control situated at the trailing

edge of the wing.

Finally, the analysis is applied to the simple example of a delta wing having a given mass

dibtriLution and xx hose oxerall characteristics are probably typical of an aeroplane suitable as a

supersonic transport.

2. The Integrated Slender Configuration.

2.1. General Specification. ".

-. The general layout of an idealised, slender configuration is shown in Figs. 1 and 2: the

cross-section could be more generall a x ing-bod) shape. Fig. 1 shoxx s the main geometric parameters

of the aeroplane while Fig. 2 shoxxs the sense of the linear and angular x elocities, forces and

moments and loading per unit length.

The reference length is taken as the root chord land the origin of the axis system is at the mid-point

of the trailing edge.
The control force P represents an idealised aerodynamic control; in practice P "N ould be supplied

by elexator-tqpe controls giving a short region of distributed pressure loading. The force P being

aerodynamic in origin will have the form
P = pV 212(control coefficient)

for fixed control angle relatix e to the trailing edge of the xx ing. On the basis of Slender-Wing Theory

the control force may be altered by varying the control coefficient without affecting the pressure

distribution on the rest of the xNing: the control coefficient (symbol P*) may be loosely referred to

as elevator angle. It is assumed that the control is irreversib!e so that in a perturbed motion the

control coefficient is constant. Thus the control force P varies in proportion to the deviation in

forward speed (Section 2.3, 3, Part I).

2.2. Numerical Integration.

As pointed out in the Introduction all the numerical operations required for solution of the trim

equations and the deviant equations of motion are based on the evaluation of definite integrals.

The reduction from a continuous system to a dynamical system is made by representing the'4" continuous (longitudinal) displacement cur e (x) by its values .[ at a chosen set of collocation points:
thus ever% numerical integration wvill be based on this set of points throughout the calculation. The

points will be associated v ith a preferred numerical integration formula and may not, in consequence,

be equally spaced.
In the general form of the deN iant equations of motion and the trim equations the set of collocation

points is not specified beyond an indication of their total number. The integration formula is

represented as a set of numbers assembled into a diagonal, N eighting matrix indicated by the symbol

2.3. Structural Influence Coefficients.

," Since spanxxise sections of the wing are treated as being igid the xxing behaves essentially as

a non-uniform beam in bending. The simple theory of bending is assumed to hold but no difficulty

22

o%%

d -'[°,°



I -717

is presented if an approximate allowance for shear deflection is made based on the usual simple
theory of shear in slender beams. A discussion of tle calculation of influence coefficients when"
spanwise flexibility is included is given in Section 5.

Let EI(x) be the bending stiffness of the wing when treated as a slender beam of variable
cross-section; then the Influence Function for the beam considered as built-in at the trailing edge

' "', is most conveniently expressed by the Unit Load Equation (Principle of Virtual Complementary

Work) in the form
G~~~x,( -) = x(.X).') dx', <-- ,(x, EIV ) =I ., x <')

f (x ) a, xd < x. (2.3, 1)
0 EI(xv')

In the general case these integrals will be evaluated numerically to yield a sct of influence
coefficients for a chosen set of collocation points (the root station contributes a null row and
column, see Part I, Section 2.4.4).

The Influence Function tor the unrestrained wing is given by {equation (2.4, 11), Part I.

G'(x, e) = G(x, 6) - G(x, ') [a(6) + b(f)f'] d ' + A(f) + B(6)x (2.3, 2)

where 26 ,--'
a( ) = (21- 3e), b(e) = (26-1).

The second integral may be evaluated numerically using the influence coefficients Gj.
The unrestrained Influence Function referred to Attached Axes at the trailing edge is given from

(2.3, 2) by taking A = B = 0. The unrestrained Influence Function referred to Mean Axes at the
trailing edge is given by taking A, B as in equations (2.4, 12), Part I: these equations may be
evaluated numerically.

It will be seen in Section 3 that in setting up the equations of motion the quantities
:' ' . G'(x, e) ad G'(x, e)

and

are required for the unrestrained Influence Function referred to Attached Axes. These are given from
equation (2.3, 1) as

_ G(x, F a + e] d6'; (2.3, 3)

.. " -- e " ') + '1,820' 02G

where
aG r(xX')

dx', x<
-e Jo EI,(x')

fo E(x') < x (2.3,4)

and

-=0 ,x<

1,WX (2.3, 5)
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The foregoing relations (2.3, 1), (2.3, 4) and (2.3, 5) constitute all the information required on

the elastic properties of the wing.
In writing the equations of motion and the trim equations the Attached-Axes unrestrained

Influence Functioti is used. The reasons for adopting Attached Axes are gixen in Section 3.1. 4,

2.4. The Aerodynamic Loading.

For the calculation of the de•ant, unsteady aerod nanic pressure loading [item (4) of Section
2.3.3, Part 1J the Slender-Wing Theoryll , 19 is employed; spanx ise sections being rigid then the
local loading per unit root chord is dependent only on the dox nNx ash at that section.

Although the same theory need not necessarily be used in calculating the trim state it is cou1 eniLnt
to do so. Iloxxexer, significant non-linear effects may be present in this type of xing due to leading-

.,, edge separation so that in calculating the trim state a non-linear thcory might be preferable. But
there seems no alternatie at present to the use of linearised unsteady aerofoil theory for zero<:1 mean incidence in calculating the deviant forces. The use of non-linear aerodynamic theory in
calculating the trim state is dealt with in Ref. 15.

In application it is assumed, %%ith resulting considerable simplification that the trequency

parameter of the motion is not too high so that, in the cross-fiox plane, the x elocity potential
satisfies Laplace's Equation (sec R,.f. 20 for these conditions in detail). Then contrary to almost all
other unsteady theories it is feasible to dispense xxith the restriction of simple harmonic motion
and since a general motion may be dealt %N ith the dexiant equations of motion may be solx ed

% completely in the sm se that the frequency and damping of each constituent mode of the total motion
may be determined.

The deviant aerodynamic forces are derived as for a flat wing but no difficulty ensues if the

cross-section is taken as a x ing-body combination. The inclusion of spanwise flexibility is discussed

in Section 5.
The deviant aerodynamic loading per unit length l(.x, taken positive in the negative z-direction

(Fig. 2), is given by

l*(x*, t*) = 77 [s*w*] (2.4,1)

where the non-dimensional scheme of Section 2.2.5 of Part I is employed and w,*(x*, t*) is the
fluid velocity normal to the xing surface (doxxnxxash Nelocity). This xelocity is given in terms of

w*, q* and t* by (Ref. 8)

w/'= w* - q*x* x* + t* (2.4, 2)

and finally,
-7, -: o -,* (2.4, 3)

hoxvever t*) *2(1 X) (2.4,3)
The derivatives ,Nith respect to x do not lend themselves to accurate numerical evaluation;

however, it will be seen that in setting up the equations of motion these derivatihe,, may be
eliminated by repeated integration by parts.

3. The Synmmetric, Deviant Equations of Motion for the Slndea Configuration referred to Attached

Axes at the Wing Trailing Edge.

3.1. The Deviant Equations of Motion.

For the deiant equations of motion the attached axes are most conxeniently taken to be 'wind'
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0.71

(or stability) axes: further, in conformity N ith the adoption of a linear aerodynamic theory, it ib
-' 5.assumed that the trim-state, local inci&nce of an) section of the NN ing is small. Then in the general

deviant equations of motion (2.2, 6) of Part I we have, for symmetric motion,

v= (,t*, 0, w*); n* = (0, q*, 0); , = = 0

%.1 2 0
F* (X*, 0, Z*); L* (0, 0*, 0)

and for simple longitudinal bending of the wing as a beam,

r' = -- x) '0,

A.. * to first order.

Neglecting rotatory inertia terms and setting

.,. 8() = G'(x, )c

in the variational equation (2.2, 6c) Part I, then the deviant equations of motion are:

i.n ,.* -= + w*O X* (3.1, 1)

.5.* d* dtq*

dq- + f ix*) * dx* I Z* (3.1,2)

mr ( [ ~ + t* + 7k2  at*2

n*(x C -fO+X** dt*_ 7f,,,(x*)x* - dx* = Q* (3.1, 3)

ii' (x*) + fc,*fo(xv*, M* l('*) + Mn W,,( ) -yir - + t*2 ]
0

where the reference length I is taken as the root chord (Fig. 1) and k* is the (non-dimensional)
radius of gyration of the wing about the y-axis. The mass and flexibilit) parameters mr*, C,* are

-. * defined at the reference section as

2r (3.1, 5 and 6)

The mass distribution and influence function are expressed in terms of these parameters by writing

Sn*(x*) =lmr*fo(x*), G'*(x*, e*) = c,*fo(X*, *)

N here the 'f' functions are purely numerical functions of x*, 6'. The mass of the aeroplane is given by

fM* m(x*)d* M,* f.(x*)dx* =Pifnr* (3.1, 7)

-. where 1z is constant for a given mass distribution.
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The aerodynamic forces are the sum of the four contributions outlined in Section 2.3.3 of Part I

where, in this case, the unsteady contribution is gix en by equation (2.4, 3) based on Slender-Wing
Theory.

The trimmed-state aerodynamic forces are

, I + C,1' Iw * = [V 1 (3.1, 8a)
p V?"l

X,pV-1
212  0 = C1 l' - Ct)1' (3.1, 8b)

Q 1 C ' = ' - ,, *- (3.1, 8c)

pV7 1I3  pV1
213

12 = li*(x*) + PI*8(x*) (3.1, 8d)
p V1.

v, here S(x*) is the Dirac Function representing the (idealibed) control forc, and it has been assumed
that the thrust line is along the tangent to the N ing at the trailing edge. The dash on the lft, drag
and moment coefficients is to denote that they are Lsed on 12 and not on wing area: the more usual
coefficients are given by

A.R. 2 etc.

The control coefficient Pl* and steady loading 1*(x*) can only be determined by solving the trim

problem for the flexible configuration; this is done in Section 4.
It is assumed that thrust remains constant throughout the deviant motion and any change in the

Strim-state drag coefficient due to the deviant deformation is ignored.

Finally

pi*wt*+ (I M, + 2Cl'} fi

r:.'<.t. :--. - ( ,,* (1 + xu  */ - fl q.*dx'*' q* + ,,,r* Jo ff ,T dX*~ + lI* *dx* = 0.

( a M +- 2CL' x*+ (m r+Xg* + fo lw*x*d * w* +

+,kOM]M - i" u- i ," xadx * -nr x
( f. +I,,* _ &V*+0

C+ LX"r Li(" .... ((] + [lit + *2

It$ .,, 6 o0
f m

+ tw.*( *)w* + l4.*( *)q* +/l .*( :*)g*( :*) +

r _o

+ ,*f,,,( *) [dw - - q* dq* a *((*) * *
X9 % %' Ll 1d) -x*
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are the complete deviant equations of motion for the slender configuratioa where 1 ,l.*,1l7' 1*

are the linear operators,
a.- a S *2 (3. 1, 10a)

(at*

* o* -T 1a' (3.1, 10b)

Since the integrals involving the aerodynamic operators lV* , /,.* and l,** are to be evaluated
finally by numerical integration it is clearly important that only *(x*) and not its derivatives should
appear in these integrals since the presence of a derivative of the unknoN% n * would require the

use of numerical differentiation which is notoriously inaccurate. It is possible to achieve this by tMIN

repeated integration by parts at the expense of introducing derivatives of the influence function G'
and the zemi-span s*: however, equations (2.3, 4), (2.3, 5) show that the derivatives of G are
available as integral expressions and it is assumed that the wing planform will be known closely
enough to al!ow calculation of the derivatives of s. But the complete elimination of the derivativeb

of * from these integrals depends on the use of Attached Axes situated at the trailing edge of the
wing and the fact that the wing (or wing-body combination) is pointed. These conditions are
explicitly

s* =0 at x* = 1,

* *=0 at x* O. PC

Details of the above reduction are not given here {but see equation (3.1, 12)).
The integro-differential equations of motion are now replaced by a finite set of ordinary differential

equations by replacing the function *(x*) by the vector { *} the elements of which are the values

of *(x*) at the (n + 1) collocation points, x,, j = 0 to n. The integrals are evaluated by numerical
integration using a weighting matrix [J]1 as outlined in Section 2.2. Equations

(Da1 + bn) b12 c.13i

b21 (Da22 + b22) D(Da2, + b23) (D2{a)'2 + D{b}'2 + {c}' 2) w*-

b3l (Da32 +b 32 ) D(Da.3 +b33) (D2{a}', + D{b},+{c,) = 0 (3.1, 11)"

1b), (D{a 2 + {b)2) D(D{a 3 + {b) 3) (D2[a] + D[b] + [c] + ).

are now the (dynamical) equations of motion for the aeroplane where, for convenience, the symbol D

replaces dldt*. The origin of axes at the trailing edge will normally be a collocation point but since, by

definition of attached axes * 0 there, the vector ( *) need not contain a value of * for this point.
Hence the vector { * contains only n elements for n + 1 collocation points one of which is at the

trailing edge. However, the numerical integration and hence the weighting matrix [U]D are carried
over n + 1 stations.
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The scalars and row, column and square matrices appearing in the dynamical equations (3.1, 11)
are as follows: unless otherwise stated row, column and square matrices ate of order 1, (n + 1);
(n+l), 1; (n+l), (n+l) respectively; a dagger t indicates that the element, row or column
appropriate to the trailing-edge station has been omitted.

a,, = Pn,* ; b, = M, + 2C,),'

; .... _ Ic,'

b1= , - g C3 '1

b -- a- 1M ,  + ]2 CL 3'

a2 , = n,* + 7{ (1)' If] [J (021; b2' = j1' + _S* X*=O

a.3 "= - rxx* - 7r {1}' f{s"x*}; b23  -Imn-- j.]If]
t{a}'2 = Mr* { ..f + Ir {s* 2}'[f] D f]D

={b}' I =71 S;If] {}'2 = 0

b31 = - (M ], M, 2CLI'XU*

., a32: IZm,-*X, 7r -Vl If] {S*. .2+ f 1)'[If] fS.2,
D D

a33 = jim,*k*2 + 7T {'V*2}' L * ; b3 = 7,, * + IT { f] f*}

If]y fS 3 tn.X

"- - mr* {".x*} If[] D I {X*S2)' [f]
t{b) ' = -IT * + x

4, t{b '71 a += * 
i +. .: I f] D (M a +2) ,.+ + (Map* {f+)
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t~a)2 -In*[[ U [iD.

I UTf][IDU ..i Ul I]
d *2

If] [. I],

{} = ,,,* f 11 if,,,} +~ - rif i I'

D D

r{b)= - , [UG] Y] .J} + U [f] di (s*2') }
t[a] in,* V If] [I,,,] + rfG] ID [S*2]1

Ib] D .. ID [ + [f] D

af r Fds*2 1L f D If] D
2f= . Ff1 . (3.1, 12)t (c] = L U6JJD L I*] D -*J!

3.1.1. Steady-state Mach nutmber.--All the aerodynamic forces derived from unsteady
aerofoil theory are fundamentally functions of the stead-state Mach number. However, in this
instance for the particular form of Slender-Wing Theory used the dependence on Mach number is
absent: this fact will be used in the ensuing development but the restriction is not necessary to the
analysis.

In addition since the configuration is slender the variation of the steady-state aerodynamic forces

with Mach number is likely to be small; that is, we may take b,,, b21, b.1, and (b), to be independent
of Mach number.

3.2. Sohtion of the Dynamical Equations of Motion.

The solution of the set of homogeneous equations (3.1, 11) is of the form

ut*, W*, 0, j* cc e14 "

where v is in general complex. It is convenient to use the symbols 0*, w*, 0, j* also as the complex
amplitudes of the motion ev' and then the algebraic equations for the determination of the modal
columns

and the characteristic roots i are simply equations (3.1, 11) with D replaced by v. The presence of
a positive real root Vk indicates a divergence while the presence of a complex root N-ith positive realJpart indicates an oscillatory instability.
~29
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The equations are most conveniently dealt xNith b) reducing the second-order equations to an
equivalent set of first-order equations NN hen the v,. and the modal columns appear as the eigenN alues
and eigenvectors of a single matrix with real elements. The form of the equations of motion (3.1, 11)
is, in terms of partitioned matrices,

L~ i D + B 11 A 12 D + B12 D + C1  q1 =(3 2 1
A21D + B.1 , A 2zD2 + B22D + C22J q2

where

q= and q [
The vector q, contains the ignorable co-ordinates u and w*.

Introducing the velocities corresponding to the non-ignorable co-ordinates 42 Dq 2 as
subsidiary variables then equation (3.2, 1) may be rewritten

(D(,+T)y = 0 (3.2)-2)
where

A11 0 A 21  1 C12 B1 2SI 1F
0 1 0 0 0 0 -1

LA21 0 A22- LB, C22 B0.J2--i ' " and "

y= q2

[2]
The order of the matrix equation (3.2, 2) is (4 + 2n) where (n + 1) is the number of collocation points
covering the wing root chord.

The standard eigenvalue problem is usually stated as

(vI+ U)x 0 (3.2,3)
and a variety of methods are available, suitably embodied in digital computer programmeb, to deal
with this equation.

Programmes do not seem to be available to deal directly with equation (3.2, 2). The point seems
trivial since a premultiplication by D-1 or 1- will yield (3.2, 3). However, in this case the use of
the unrestrained influence coefficients renders (D singular; in fact (D is of rank 2(1 + n) (see Part I,
Section 2.4.4). This is seen immediately if it is noted that parts of the matrices A21 and A22 are
derived from the influence matrix [fO] by multiplication by non-singular matrices. The matrix T is
not generally singular due to the presence of the unit matrix in C22 howxe-ei, it will ceitainly be
singular whenever the static stability is limiting, that is, when v = 0 is a root of equation (3.2, 2).

:c:. In view of these considerations the following course is adopted. Let f be any arbitrary constant,
real or complex; then equation (3.2, 2) may be written

((v-p)(I + (+FP(I,))y = 0. (3.2,4)

Let/. = 1/(v-3) then the equivalent eigenvalue problem is

(('F +l)- l' + 1tl)y = 0 (3.2, 5)

wherein the root v = 0 appears simply as l/f. The matrix T + (l) will only be singular if it
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,'.:' happens that 8 is an eigenvalue of equation (3.2, 2). Tihe choice of flis best dictated by a knowledge
;¢V,';of the probable value of the roots of smallest modulus of equation (3.2, 2). It is clearly convenient
-V and indeed essential for many digital-computer programmes to take P real.
,r.' For a given aeroplane layout the non-dimensional scale parameters to be specified for a solution

of the equations are:

' ] r p V1214 W
":';"! m = f fi ' c *- I and W,* = V212.

' )',- Also, before the equations may be solved the trim state must be known: w~e thus study the stability

~is thus necessarily a variable parameter for a complete study of stability, Should the altitude be fixed

(at least for one series of calculations) then the parameter m,-* is fixed: the parameter c,.* is most
conveniently replaced by the quotient

Cr* e W--

*41*

where WI2
ehappen (3.2,6)

is a fixed parameter for the aeroplane. It may be noted that since W 2Mg then

W,* = im'*g1* (3.2, 7)

where gl* is the Froude number gl V12.
Thus in the equations of motion (3.1, 11) the factor lc* multiplying the unit matrix is replaced

by Wl*/e,.*. hntecefcet ~,bz a zb the column (b), and the factor W,*Ie,-* vary
according to the trim state considered: all other coefficients are fixed except for ba but if we neglect

CD1' in comparison to 1T(s*'), o (the lift-curve slope of the rigid aroplane) then this coefficient may
also be considered constant.
It may be noted that when the change in forward speed 0 is suppressed the first row and first

column of equations (3.1, 11) are elinminated. These contain all the coefficients dependent on the
trim state with the result that reference to the trim state is now completely absent from the deviant
equations of motion; the most significant term dependent on the trim state is kb. The significant
i u c r aiparameter for this reduced set of equations is c*: this is a purely aeroelastic parameter in the sense

' The free vibrations of the aeroplane are given from equations (3.1, 11) by taking all forces except
ainertia forces to be zero. The two parameters mn* and cr* now combined to yield the single parameter I

:2 eV* ,* C*  (3.2, 8)

provided the contributions to the inertia coefficients due to aerodynamic inertia are ignored
(in-vacuo ibrations). It is much more convenient for the calculation of vibration modes and

frequencies to replace the attached-axes influence coefficients by influence coeffici uts referred to
mean axes (at the trailing edge); the equations for the in-vaceo vibration modhs are then simply

[ar]e + el*}mn d (3.2, 9)
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where [a,] is given by the appropriate equation of the set (3.1, 12) %N ith the mean-axes influence

coefficients substituted for those derived foi attached axu. It may be recalled that, as defined, the
: inertia coefficients [a,,,] are proportional to mr*.

4. The Trimmed-Flight State for the Slender Configuration.

S-, 4.1. Trimmed Level Flight.

The calculation of the trim state is based on the application of Slender-Wing Theory for rigid
spanwise sections as for the deviant equations of motion. Accordingly it is assumed that the

aerodynamic forces are not dependent on Mach number.
The aeroplane structure is again represented by the influence function for attached axes at the

trailing edge, the control force is represented by a concentrated load at the trailing edge and the

thrust is assumed to be adjusted to give level flight at a given airspeed.
As defined in Part I, Section 2.1.1 suffix 0 is used to designate a reference configuration which is

not necessarily a real equilibrium configuration for the aeroplane. Here it is taken to mean the

aeroplane configuration v hen completely unloaded. Thus the specification that the aeroplane has a
certain 'built-in' camber refers to this idealised state: the uncambered aeroplane is defined to have a
plane mean surface in the reference configuration. It may be imagined that the reference
configuration will result from the aeroplane being supported at a great many points so that the
weight is locally equilibrated. When reference is made to the 'rigid' aeroplane it is to be understood
that the corresponding invariable configuration is the reference configuration with or without
built-in camber as the case may be.

For the calculation of the trim state the attached axes are most conveniently taken so that the
x-axis is tangential to the wing mean surface at the trailing edge; the (x, y) plane then defines the
mean surface of the uncambered reference configuration. The overall incidence of the aeroplane
is the incidence of the trailing-edge section for this choice of axis orientation.

The aeroplane is taken to have a built-in longitudinal camber 0*(x*) which leads to the

aerodynamic loading lo*(x*): the total aerodynamic load is thus

** d F ~ d
l _*(x*) = lo(X) - .r w,* dx* ] (4.1,1)

L N.*
and if lo* is also calculated on the basis of Slender-Wing Theory then

-(x*) = 7_d** * 2 dx* 7r dx*2 - (4.1,2)

Assuming the local incidence to be everyN here small, the equations of equilibrium are (Part I,

equations (2.2, 1)}

M*g ** - O* = 0 (4.1, 3b)

JX*(*) - foc,*f(x * , 6*) {z,*(6) + 70( *)gl*}d * =0 (4.1, 3 c)

where, ZJ*(W:) = I*(W) - l-'1*8(*) (4.1, 4)

.,1 < is the total aerodynamic loading. .
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The expanded forms of these equations are:

WI- lrs* w* - - 1o* dx* - P1* = 0 (4.1, 5a)
J0

ffXy 7 f' S* 2 d.X* ,* - . * _ V**J* = 0 (4.1, S b)

+*(X*)cK7 * +d d * ) +* o fc(x*, \*) 7- d* w,* +

+ Io*(e*) + P,*s(e*) - wr*f,(.*)} de* = 0 (4.1, 5c)

where
W1* =M*gl* = 1itm'*g1* = 14w,1*

As with the deviant equations of motion these equations of equilibrium are replaced by a finite

set of algebraic equations in the unknowns P1 *, w,* and the vector { *} using the same set of
collocation points: as a consequence some of the resulting matrices are identical to those already
derived and where this is the case the same symbol is employed. The resulting inhomogeneous,
algebraic equations of equilibrium are:

22 1 {0Y wi1 [11 b
b32  0 {c}' P*I J* -x, b30baz (c' [x~l= W. -xu + l~o I (4.1,6),

{b}2 {fGO} ([C] + er -)' J [-,kJ o

where {foo} is the first column of [fa] and

{k) -= [f I (fm. (4.1,7)

b20 = 0

b30 = {c}'3 W}o (4.1,8)
{b}o [c] {*}(o

when lo* is calculated from Slender-Wing Theory {equation (4.1, 2)). It should be noted that the
expressions (4.1, 8) apply only for attached axes which are tangential to the wing at the trailing
edge: the fact that b2o is zero for these axes for example is merely reflected in the particular meaning
given to overall incidence w*. Attached axes could equally well be chosen so that the x-axis joined

the trailing edge to the wing apex for the fixed camber shape 0*.7

4.2. Sohtion of the Trim Equations for Level Flight.

Since interest is fixed in high-speed-flight conditions it is con enient, , ith close approximation,,
to replace W,* by the lift coefficient CTM'.

Equation 4.1, 6 shows that the trim-state solution is the sum of two parts:

(1) the trim state of an uncambered aeroplane,

(2) the equilibrium state of a weightless, cambered aeroplane,

It is convenient to retain this division of the complete solution and for this purpobe the suffices
it and c are used to refer to solutions 1 and 2 above respectively.
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The distance of the aerodynamic centre of the rigid aeroplane from the trailing edge appears
naturally as a parameter in the trim solution When Cl1)' is neglected the coefficient b22 is the lift

"" of the rigid aeroplane per unit angle of attack [equations (3.1, 12)) while b32 is the (aerodynamic)
moment about the trailing edge per unit angle of attack: thus if we define x* as the distance of the
aerodynamic centre of the rigid aeroplane from the trailing edge then

b32 = -

'The quantity , - * will be recognised as the e.g. margin of the aeroplane.
Rearranging the force and moment equations of the set (4.1, 6) (and using the first of equations

(4.1, 8)} we have
P = L ( . - - "+ b 3 0 - { } {( 4 .2 , I a )

W = _ + {C *} (4.2, lb)
b 22 x b2J* b2 2 xU

2kY.i and substituting in the last n equations of (4.1, 6),

1+ [c] b22
.er* {fo} -[C] 9 {C} V

C, 1 [, {c} + { 
F*

xi + {b}0 + {b)2 (4.2,2)

The calculation of f*, from (4.2, 2) involves simply the solution of n simultaneous equations:
the left-hand-side matrix depends only on the stiffness and aerodynamic characteristics of the
aeroplane. Substitution of the solution r*) in equation (4.2, lb) then gives w,* and thence P* is
obtained from equation (4.2, la).

At low speeds the left-hand side is effectively (CLI'/er*)I so that the part solutions {[*], and
{ } tend to

,IoVb , s , = e rk + b,,. + {fJ o} " - 1 (4.2, 3)

.and
.e* .b l b

(MI Iovspeed = [b)o + (b)2 -b1Z* (4.2,4)-f *

Thus at low speeds (P*),.x* is effectively that for a rigid aeroplane with the constant camber shape
lo{ ,,eea while (P*)eg* is effectively that for a rigid aeroplane with the total camber shape

_ {*}o + W ' ({4,*}e is inversely proportional to C'a ). Equation (4.2, 2) can now be written

in the alternative form
[ I + [K]] {[ },, ow sI)C( + -= (Eza' {, lo,,'se,,) (4.2, 5)

where

ff Jo} - ( b) 2
[K]= [c - { (C)] - (4.2,6)

The expression in the bracket on the right-hand side of equation (4.2, 5) is constant.
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'I Finally, substituting the exprezsions (4.1, 8) in equation (4.2, 4) it is seen that

1
. 1 (C1 '{g*} ,o, -- [K] *} (4.2, 7)er,.

4.3. Behaviour of the Trim Solution.

The following is a brief discussion of the typical behaviour of the trim solution for the slender
configuration Nith N ariation in speed. This beha% iour is most clearly illustrated by a consideration
of the trim curve of the aeroplane, that is, the curve of control coefficient, Pl*, against lift coefficient,
C 1.

A quite general picture of the probable behaxiour of the trim state for the slender configuration
can be deduced by consideration of equation (4.2, 5). It may be shown for example that the shape
of the trim curve at high speed is determined largely by the low-speed camber shapes l tows se,
and { *}cow speo,. This conclusion appears in Ref. 21 wherein a full discussion of the trim state is
undertaken together with the connection betA een the shape of the trim curx e and the static stability
of the aeroplane. Ref. 21 also deals with the application of the usual ideas of manoeuvre theory" to
the slender configuration, normally embodied in the concept of 'elevator angle per g'.

The control coefficient P
1
* (proportional to elevator angle), incidence w1* and displacement

{*}* become indefinitely large for zeros of the determinant

C" I + [K],.

Thus the speed, Vjmx which gives the first zero (i.e. (CL').,} of this determinant represents a
theoretical maximum for a possible trimmed state of the aeroplane: from a practical point of %ieN

P1*, w1* and {(*) will become large as this speed is approached: Hancock15 has termed this the
Maximum Trim Speed. Since linear aerodynamic theory is being used coupled w ith the assumption
of small relative deformation such effects need to be suitably interpreted: the numerical example
of Section 6 shows that deformations remain quite small up to near the Maximum Trim Speed
although the effect on control coefficient is considerable.

Clearly
(CL), 11 _ EI,
e* p( V 11111J214

is the largest (dominant) eigenvalue of the matrix [K]. The Maximum Trim Speed depends only
on the aerodynamic and stiffness properties of the aeroplane and not on the weight distribution.
A variation in stiffness EI is indistinguishable in this context from a variation in pV2. he
eigenvalue itself depends only on the relative distributions of stiffness and local aerodynamic loading.

Let V. be the (lowest) speed for limiting static stability of the aeroplane, then (Appendix I) at
this speed the slope of the trim curve, dP*/dC,', is zero. If 1V < Vnmi then (Appendix I) the slope
of the trim curve suffers a change in sign between some lov, speed and the Maximum Trim Speed
while if V > V.,, there is no such change in sign.

Some typical trim curves for an aeroplane without built-in camber are shox n in Fig. 3. Cure 1
consists of the CL-axis and the two branches of the Maximum-Trim-Speed line: it -,%ill occur in
the very particular case NN hen the local ,N eight is exactly balanced by the luoal aerodynamic loading
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of the rigid acroplane, that is, {k} {b}.,/b. 2 and .v * V*. If =* ,* but the weight and
. . acrod) namic loading (due to incidence) do not coincide the trim cur\ e \ ill be as curs es 2 depending

onthe'of ' ntheusalcase and (b fb_ will differ and for an aeroplane \x hich is: on the sign of (" * In the usual case 1k, andt ',1,

statically stable at lo\N speed xv/* > . The basic trim curve of the rigid acroplane is a straight

line of slope - (x *- *) passing through the origin Cr,' = 0, P* 0: such a line is shown in
Fig. 3. Generally speaking the trim cur\e for the flexible aeroplane \\ill be like cur\e 3 or 4, the

shape of these cur es being determined primarily by the 'natural', loNN-speed camber shape,
' { ~ C c(I. While these curves are probably typical it cannot be asserted that a trim curve

IN cannot cross or re-cross the corresponding rigid-aeroplane trim curxe (Ref. 21). Trim curve 3
indicates that static instability occurs before the Maximum Trim Speed.

5. Allowance for Spanwise Flexibility.

When spanwise flexibility is to be allo\Ned for, the matrix of influence coefficients refers to an
ordered grid of collocation points distributed o er the %%ing surface. Similarly, the mass and

aerodynamic loadings are functions of position in a plane. A consistent integrating scheme for

integrals applying over the \Ning planform is required to replace that applying only along the root

chord of the wing.
•,.4. When Slender-Wing Theory is used then the pressure loading over any spanwise section is

dependent only on the (spanxN ise) N ariation of do\\ nN ash o\ er that section. When the 'lo\\ -frequency'

* form of Slender-Wing Theory is adopted the determination of the pressure at a collocation point
in terms of the do,.\nwash is straightforward. Thus as in Refs. 18 and 19 the velocity potential is

V expressed, on the x\ ing or vx ing-body combination, as a Fourier sine series vNhose coefficients are

determined by definite spanv% ise integrals of the doA nNN ash. These coefficients may thus be expressed

in the form (k)' {wl NN here u, is the downvash at station i and i carries only the values pertaining
to stations on that section. The velocity potential and hence the pressure at any point in the

cross-section is given by
.? . (p} [a] (w/} "

for a single spanwise section.

Finally the matrix of aerodynamic influence coefficients consists essentially of a partitioned matrix

N\hose matrix elements (of different order) lie only along the diagonal: each 'element matrix' refers t
S ,to one spanwise section. The downwash w, at any point is then expressed in terms of w*, q* and

{ } as in equation (2.4, 2).
In carrying out the span,.%ise integrations it is more important that the scheme of numerical

integration used be dictated by aerodynamic rather than structural considerations.

6. A Numerical Example.
6.1. Introduction.

The following numerical example illustrates the application of the general analysis for the

slender configuration to a specific case and the numerical results obtained serve to illustrate some

of the conclusions already draNn concerning the beha-iour of this type of aeroplane. No attempt

' - has been made to choose stiffness and mass distributions N hich are likely to be met in practice but
the oN erall stiffness, mass and N eight parameters ha\ e been giN en alues N hich are probably tpical

for a possible supersonic transport.
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The configuration is chosen to be a delta NN ing; the stiffness distribution N arics directi) w ith the
local span and is therefore linear. Two mass distributions ha ing the same total mass and e.g.
position but which give very different low-speed camber shapes are assumed.

More realistic configurations will differ from this in ha ing higher stiffness o-vel the central
parts of the wing and less stiffness at the trailing edge. At the apex there wN ill, in a practical case, be a
nose extension having a not inconsiderable mass and some stiffnesb. The general mabs distribution
is likely to resemble the stiffness distribution being someNx hat concentrated in the central part of
the wing. All these points are hoN ever incidental to the prescntation and illustration of the general
analysis for the slender configuration and belong properly to an extended design study of this
type of aeroplane.

The calculations are carried out for a fixed altitude of 40,000 ft. at w hich height the cruising

Mach number would be expected to be close to 2.

6.2. General Specification.

The reference cross-section is taken to be at the w ing trailing edge. The stiffness distribution
EI(x*) is taken as

EI(x*) = EIf(1-x*) (6.2, 1)

The two mass distributions, referred to as (A) and (B) respectively, are taken as

m*(x*) - r* (2- - x*2), (A) (6.2, 2a)
2

and

m*(x*) - - (1 + 9x* - 25x*2 + 20x" a -5x*' ) (B) (6.2, 2b)

giving a total mass AP = (7/12)mi,* or {equation (3.1, 7)} = 7/12.
The centre of mass of both distributions (6.2, 2) is at x -* 5/14 while the aerodynamic centre

due to incidence for a delta wing is at k* = 1/3 so that e.g. margin = (x*-.*)-0.0238...
The weight/stiffness parameter e,* = W 2 EIr is taken to be unity: this value gives static

deflections of the wing due to loads of the order of the weight of the wAing of order 1/20. The
stiffness parameter cr* for er* = 1 is then

-- ' OVI 1~i "-

The relative mass parameter M* = M/pl 3 is chosen to be 3 - at 40,000 ft (about 0" 9 at sea level).
-. The wing loading is also, in effect, fixed by the choice of M* since k.a,

W 4Mg
wing loading = 2l = = 4gM*pl

\4. 12

so that, at 40,000 ft, wing loading ; 0" 271. While an actual specification of 1 is not necessary for a "?
solution of the non-dimensional equations of motion and equilibrium it w% ill be con enient to choose
a typical value for 1; this is done by fixing on a wing loading of about 55 lb/ft2 gi% ing 1 = 200 ft.
The cruising lift coefficient (based on wing area) at 40,000 ft and Mach 2 is then 0.05.

The foregoing specification is summarised in Table 1 together with a diagram showing the two
mass distributions.
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*"' 6.3. Numerical Integration.

The number of collocation points used is sex en, distributed e% enly along the NN ing root chord N, ith
th-c end points at trailing edge and NN ing apex. The numerical integration formula used is Weddle's

Rule giving the weighting matrix

5

I6 -

5 ,'f

for integration with respect to x*.

6.4. The Influence Coefficients.
For the simple stiffness variation of equation (6.2, 1) the cantilever influence function for the

wing 'built-in' at the trailing edge is simply

V*~2

fo(x*, 6*) = (1- *) {(x* -1) In (1- x*) - x*} + - * <

= (I - x*) {e* A 1) In (I - *) *}+ * (6.4, 1)

An evaluation of these expressions gives the matrix of influence coefficients referred to the
collocation points; these are given in Table 2.

The unrestrained influence function for attached axes at the trailing edge is given, through an
application of equation (2.3, 2), as

f"(x*, *)lattached axes = (1- e*){(x*- 1) In (1 -x*) - x*} + X*2 - "

T1 {(x*2 - 2x*) + 6* (6+2x*- 2x**2 )}, x* <

2- - {6:* + 2(e* - 1)x* + (1 - 2*)x*-}, x1 > (6.4,2).'ij 12,.'.

The matrix of unrestrained influence coefficients referied to attached axes at the trailing edge is
given in Table 3.

The unrestrained influence function for mean axes at the trailing edge is given through an
application of equation (2.4, 12) of Part 1; there is no adxantage in gix ing the analytical expressions
explicitly. The matrix of unrestrained influence coefficients referred to mean axes at the trailing
edge is given in Table 4.

The simple stiffness xariation chosen has alloxxed the analytical determination of the influence
functions but i. the general case the matrices of influence coefficients xillbe the Uutcome of numerical
integrations. tlox ex er, the general appearance of the matrices of influence coefficients x ill alx ays be
similar to those matrices given as Tables 2, 3 and 4.

The derivatives of f0 (x*, *) (equations (2.3, 3). (2.3, 4) and (2.3, 5)1 are also simply determined;

these matrices are not given here.
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6.5. The Deviant Equations of Motion.
Little comment is required on the particular form taken by equations (3.1, 11) and (3.1, 12) for

this numerical example.
However, three points require brief mention. First, the drag polar is taken as

C * 0.020 - C1, (6.5, 1)

giving C _

" '- O- CI , ..

In exaluating b2, (equations (3.1, 12)1 the contribution from C1, is ncglected; this gixes a maximum
error in b22 at CL = 0'4 of 5,'.

Secondly, since for the delta wing

ds" 2: = _ 2s,*(1 - V)

then {equations (3.1, 12)}

{b}2 c [f(] [JJ {2(1 -

But by the definition of the unrestrained influence function used (Section 2.4.4 of Part I)

f f* (x, 6*) (1 - 6*)d6* = 0

'.'.' so that, for these particular circumstances, {b}2  0.

Thirdly, at the wing apex the mass, N eight and aerodynamic loading are al ays zero. The result
is that the apex point does not constitute an independent collocation point although it is of
importance w hen carrying out the numerical integrations. Thus the displacement of the apex point
S* may be completely determined in terms of the remaining (n - 1) displacements and the
k ariables u, w* and 0. In effect the last column of the dex iant equations of motion (3.1, 11) consists
of zeros except for the di'agonal term which is simply CLl'Ier*. The last row and column may be

2) omitted and 'he remaining set of equations solved; the last row then gives (* in terms of the
remaining Nariables. This circumstance is a result of the unreal conditions existing at the NMing apex
in this idealised example.

6.6. The Equations of Equilibrium.
The remarks made in the previous paragraph concerning [b), and the role of the apex station

alU apply to the CquatioU of equilibtiuni (4.1, 6). The sulution of fixe simultaneous equations and
substitution in the sixth gives ¢*)i, w,* and P,* are then found from equations (4.2, 1). These

.. :, calculations are easily performed on a desk calcumator.

. *6.7. Sohtion of the Trim State.

0!1 6.7.1. Maximum trim speed.-The Maximum Trim Speed w as found by determining the
dominant eigen-alue and cigen~ector of the matrix [K] 'equation (4.2, 6)) by simple matrix iteration
performed on a desk calculator. This gave

p(V,,, , )2P c,* 164
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I When the connection between C1,' and c!- is made by the choice of (Table 1) then

Of 1 (CI) = 164

-or
(CL),,,, - 0049.

Thus the Maximum Trim Speed is fractionally abox c the nomial,d ci uising sl)ed of this partiCUla1

aeroplane.

The corresponding cigenx ector (relatix c to attached axes xx hichi ale tangenttial to the tiajilig edge)
is plotted in Fig 4 normalised to unit amplitude at the apex station. The t-axis is rotated through
the appropriate angle w,* to gix c the shape of the aeroplane iclatix c to a horizontal x elocit) k ector.

i ,.i 6.7.2. Trim curves in level flight.-For each m ,ss distribution the trim cure P* -CL for

level flight is plotted in Fig. 5. It is seen that for mass distribution A the aeroplane it, statically
unstable at speeds greater than that corresponding tc C, z 0.1.

The deformed shapes of the aeroplane at a series of speedz are shokA ii in Figs. 6a and 6b %% herein
the deformation is plottec' relative to the 'tangential' attached axes xxhile in Fig. 7 curxes are plotted
of incidence wl* against CL. The order of magnitude of the relati e defirmation c en at speeds
approaching the maximum trim speed fully justifies the use of small-deflection theor).

6 8. Sohtion of the Deviant Equations of Motion.

rigid 6.8.1. The rigid aeroplane.-As a basis of comparison the dc\ iant motion of the idealised
Srigid aeroplane appropriate to mass distribution A xxah computed. The roots of the resultant quartic

characteristic equation typically representing the short-period and phugoid motions aie represented
by dotted curves in Figs. 9 and 10. The idealised rigid aeroplane appropriate to mass distribution B

differs only in the value of the radius of gyration and sin'.c this difference is small (Table 1) the
roots are little different from those for mass distribution A: the frequcnc of the short-period
motion may be extected to be increased by the factor kj./k~i1 , that is, by about 8"'0.

6.8.2. The normal modes of free vibration.--The normal, free (in-vacuo) x ibration modes
were computed from equation (3.2, 9) xxhich uses the matrix of influence coefficients referred to

mean axes. Only the first txxo modes and first three frcqucneics are considered to be of acceptable
accuracy. The normal modes are plotted in Figs. 8a and 8b for each sPiab distribution together xiit
the corresponding va!ucs of the non-dimensional mass-stiffness-frequecy ptraicter V"r* 'equation
(3.2, 8)1: the true frequencies are also gi, cn assuming a reference length of 20U , other parameters

J being as given in Table I At 40,000 ft the still-air natural frequencies arc of the order of 98", of

these frequencies.

6.8.3. The flexible aeroplane.-The complete dexiant equations of motion Nxhen reduced
to an equivalent first-order system as detailed in Section 3.2, yield a matrix equation of order

14 Y 14. The characteristic roots xx cre obtained 'y the application of a matrix iterati e programme
' to the matrix ('f± )-1 l of equation (3.2, 5). The complete programme receix _d the matrices

,1) and IF as data.

These calculations were performed for a series of ,,Jhcs of Cl,, the first eight roots onl) being
found: higher roots xvould be of doubtful , alut ith the i1,1ll number of collocation points emploed.I The roots computed thus included those roots coricsponding to the econd normal mode. The
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results are presented in Figs. 9 to 12 as curves of the inverse of (real) time to half 'or double) amplitude

and curves of frequency in cycles per (real) second plotted against C,. The roots are easily
identifiable as stemming from either the rigid-aeroplane roots or the free-% ibration motion and these
figures are titled in this sense. This type of root label is used for con\enience in presentation only
and should not be taken to imply that the mode of motion associated w\ith any particular root or

root-pair remains similar in character at all speeds.

Since the model is not particularly representative there is little point in refining the calculation
by employing more collocation points.

6.8.4. Trim curves in shallow pull-out.-The relation of the manoeuvre theory of Gates N

and Lyon to the possible dynamic behaviour of the short-period motion is discussed in Ref. 21. The

curve of control coefficient per g (equivalent to 'elevator angle per g') against CL is easily deduced
from the equations of equilibrium for a shallow pull-out %% ith constant centripetal acceleration when

the variation in the direction of the gravity vector relative to the body axes is ignored. These equations
are identical to equations (4.1, 6) except that the column

iI

I 1 Ib33

is added to the right-hand side. Thus for this 'trim' state we may write

P,* = (PI*). + (P,*), + n(P*),,

where n is the centripetal acceleration. Since, at constant forward speed,

dP,*_d Pn,--7 (P *)

this last is effectively the 'elevator angle per g' of Manoeuvre Theory. Vanishing of the 'elevator

angle per g' indicates limiting static stability of the d,.viant equations of motion N, hen the change in

forward speed is suppressed but it is precisely wvhet- this occurs that the exclusion of this variable

(and with it the attitude angle 0) is inadmissible. The connection between 'elevator angle per g'
and dynamic stability needs to be established for the slender configuration by the investigation of

many numerical examples.
The curve of 'control coefficient pet g' againbt CL for the particular af-roplane considered here is

.given in Fig. 13 (for 40,000 ft).

7. Discussion and Conchsions.

N This discussion is concerned more with the application of the general method presented in Part 11
* for assessing the dynamic behaviour of the slender configuration than %N ith the particular numerical

<' results found in Section 6.
Although the scalars and matrices appearing in the equaions of motion Nere obtained on a desk

A. calculator for the example of Section 6 it wsill be clear that this stage of the calculation could readily
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be programmed for a digital computer, the onl) operations in\ulahcd being scalar and matrix
multiplications. The basic data would then consist of:

(1) a set of weighting numbers relating to the collocation points;

(2) the values of bending stiffness, El, at the collocation points;

(3) the values of semi-span and its derivatives at the collocation points;

(4) the values of mass per unit length at the collocation points;

(5) the relevant non-dimensional scale parameters;

(6) distribution of built-in camber, if any.

The trim problem being readily amenable to programming then the solution of this and the deN ia.,
motion become available from one simple set of basic data.

The drawbacks of the method are, first, the neglect of spanxise flexibility and, secondly, the
use of Slender-Wing Theory. On the first count the main defence is one of ease of application and
simplicity. It was indicated in Section 5 how an allox ance could be made for spanx ise flexibility
and although this is straightforward the directness of equations (2.3, 1) etc. is lost. Similarly the

use of Slender-Wing Theory is justified by its simpliity compared to other lox -aspect-ratio theories
for unsteady flow. Also, in the region of interest the main flox is supersonic so that the main
drawback of this x ing theory that it does not satisfy the Kutta condition in subsonic flox is not

serious. Furthermore the use of any other unsteady-ving theory leads to the usual restriction to

simple harmonic motion.
A third criticism may be directed at the large number of degrees of freedom required to obtain

reasonable accuracy up to say the third or fourth pair of roots of the deviant equations of motion

compared with the use of normal modes as co-ordinate functions. This is, of course, true but it must
be remembered that the calculation of the normal modes will have imolved in general the use of
three to four times the number of degrees of freedom as the number of modes obtained.

Fourthly there is the representation of a flap control by an unspecified concentrated force applied
in the immediate region of the trailing edge. This defect is easily oxercome by replacing this force
by that derived from a flap control using Slender-Wing Theory and the introduction of a finite

stiffness connection to the wing proper.
-. J The author considers the method as presented to be suitable to the assessment of the effects of
-e flexibility on the oxerall motion of a slender configuration in the xital early design stage xN hen the

structure is largely unknown in detail. At this stage the application of an involxed analysis is

impossible both for lack of information and for lack of time. The ability to more or less arbitrarily
change the basic data outlined at the beginning of this section quickly and easily is the paramount

* consideration.
For the xery simple example considered interest in the numerical results lies in the change in

behaxiour of the perturbed motion xith change in mass distribution. In particular, hox far does
the low-speed camber shape reflect the probable dynamic behaxiour of the aeroplane ?

Mass distribution A gixes a trim camber shape xxhich is alxways conxex upxward (Fig. 6a) and the

trim curve (Fig. 5) indicates a static instability at C,, z 0. 1: the transition from a pair of complex
roots to a real pair is extremel) rapid and in the region 0- 10 < C,, < 0- 125 the iterat;on of these roots
is cry slox ly conv ergent. Normally a static instability is accepted x% ith some equanimity but in this
case the time to double amplitude is doxxn to 5 sec by CL 0-06 (Fig. 9a) and is rapidly decreasing
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with further decrease in C,. The modes associated %ith the 'phugoid' roots alter in character
throughout the speed range and at high speed both the stable and unst,,ble modes slho\x increased
contributions from change in incidence and elastic deformation; the mode associated NNith the
'short-period' roots does not change in character.

Mass distribution B gives trim camber shapes wxhich are (largely) concaxe upNxard (Fig. 6b) and
1Wi the trim curve (Fig. 5) indicates no static instability. The cur, e of control coefficient per g (Fig. 13)

however shows first a reduction and then a change in sign of P,,* at CL :- 0 06: this N ould indicate
a static instability of the equations of motion NN ith change in forxa ard speed suppressed. The full
equations of motion cannot shoNN an initial static instabilit w\ith decrease of CI and any instability
must be of a dynamic nature. For this mass distribution the modes associated Nxith both the

9 .9 'phugoid' and 'short-period' roots change in character as speed is increased, the former haxing
increased contributions from change in incidence and elastic deformation, the latter having
increased contributions from elastic deformation only. The 'short-period' frequency drops to zero
at almost exactly that value of CQ for which the control coefficient per g is zero (Figs. 1Oa and 13)
and subsequently this motion becomes a pair of subsidences. The 'phugoid' frequency (Fig. 9b)
increases rapidly for speeds greater than that for CL _ 0.08 and a dynamic instability appears
in this mode at CL : 0"065 giving roughly the same ordir of time to double amplitude as for mass

distribution A.
Two general points should be mentioned. First, any change in the low -speed camber shape (or

indeed the trim camber shape at any speed) depends on the difference betxx een the mass distribution
.... and the steady aerodynamic loading and hence any uncertainty in the steady aerodynamic loading

will be reflected in the dynamic behaviour of the aeroplane: this leaves aside the question of the
accuracy of the unsteady aerodynamic loading. An accurate assessment of the trim state and dynamic
behaviour for this type of aeroplane places a heavy demand on the aerody namic theory and in this
respect the position, at present, is far from satisfactory. An additional point of importance for the
slender aeroplane is the fact that since weight and aerodynamic loading are reacted locally then
strength considerations cannot be expected to yield the same order of stiffness margins as may be
expected from a conventional aeroplane configuration.

'The second point concerns the representation of the aeroplane by its normal-modes either for
static or dynamic calculations. The change in first normal-mode frequency for the two mass

4- distributions is not large nor is the first normal mode shape very different (Figs. 8a and 8b). The
result is that the equations of motion for these t o cases in terms of the oN erad degrees of freedom
plus one normal mode may not be adequate to reflect the large differences in the dynamic behax iour
of the aeroplane. It is clear that a representation in terms of small translation, small rotation and
first normal mode will certainly he inadequate to describe the dynamic behaviour. While the use
of the first normal mode in estimating the trim cur% e might be adequate for mass distribution A the

N presence of the reflexed region in the trim camber shapL for niass distribution B (Fig. 6b) mneas
S...;. that this representation would be inadequate in this case.

The question of the response of the aeroplane to controls or gusts has not been discussed. When
the equations of motion are linearised for these cases the de% iant equations of motioa simply become
an inhomogeneous set and the usual methods of solution are axailable. While the %anishing of the
control coefficient per g is not necessarily a serious stability consideration it probably indicates
undesirable response characteristics: this example, since it does not include response calculations,
cannot shed light on this point.
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NOTATION
0 PART I

p Air density

V Airspeed

., Reference length

a Mass per unit volume

--M Total mass

012 1, 0 Euler angles

r Position vector

r' Displacement vector

v Velocity. of origin of body axes

S2 Angular velocity of body axes

g Gravitational acceleration vector
,4, Inertia tensor

Change in inertia tensor due to displacement

F Overall force

L Overall moment

q) Surface traction

Stress tensor

Strain tensor

w Transverse displacement of slender beam

p Loading on slender beam

G(x, ) Influence function for slender beam

.'-t a Denotes rate of change of vector relative to moving axes

d
% Denotes rate of change of vector relative to inertial axes

Subscripts

0 o Reference state

.. "Equilibrium state

F Fixed axis system

2 M Moving axis system
I-

{ }'' { }, [ ]' [ ]D indicate row, column, square and diagonal matrices respectively

44

V.,'
.. .-, , . . , °, . . . . . . . . . . . , , . . . .. . . .. .. . . . . . . ., , ' ,, , , ,



- - * - j

NOTATION-continued

PART II (in addition to the Notation of Part I)

1 Reference length-length of slender configuration

g Gravitational acceleration

1(x) Aerodynamic loading pei unit root-chord length

/: Fluid downwash velocity

." Complex frequency parameter

s(x) Local semi-span

'n r(.) Mass per unit length

iM Total mass of aeroplane

W Total weight of aeroplane

Xy ' Position -f centre ot mass

Position of aerodynmic centre due to incidence

.(x) Bending deflection

CL', CJ)' Lift, drag, etc. coefficients based on 12

CL, CJ) Lift, drag, etc. coefficients based on wing area

* Asterisk denotes corresponding non-dimensional quantity

. Subscripts
,br r Reference section for definition of overall parameters

%'I r

It , Trim solution for uncambered aeroplane

, Trim solution for weightless, cambered aeroplane

, Trim solution for shallow pull-out

[f ID Weighting (or integrating) matrix
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APPENDIX I

Neighbouring States of Equilibrium-Static Stability

Consider the neighbouring states of equilibrium w,*, P1*, ([)}J appropriate to C1 1 ' and w2,,

'2*, {*}* appropriate to C,,2 ': when the states 1 and 2 arc close then we write

AW* 70? - ZV* ; = P* ; { *} = {W} -{}

and
ACL' = CL2' - CLI1

_.here the increments Aw* etc. are assumed to be small. Since change in C1,' represents solely a
change in speed AV = V7 - V, then

A C1' 2 2ClI' AV. (Al, 1)
- -V2 212 p V1212

% Writing equations (4.1, 6) for states 2 and 1 and subtracting we obtain, on using the relation
(AI, 1),

[b22  1 {0}'1 Aw o
AP1  

L' 31  (Al, 2)

L[]+* 1)1 LA KL i
,x here the suffix 1 on the matrices indicates that they are to be eN aluated in the state 1. It should be
noted, in this derivation, that {equations (3.1, 12) and (4.1, 7)}

2C.,j {k} + e (-(b)),.

•~ - 'The slope of the curve P*"- CL' for CL' = C,' is given by

(dP* (P, .! ] 1 - L '/ , = L i m A t '
I JU'L - O 1P

Ib2  b22  (0}'

bal b32  0c) 3

e,. )- -eb* (AI, 3)

0'b 1 0'
b22 I

b32  0 {c' 3

f{b} 2 {o} (te]+ C] ' + )
Cr

The numerator of this expression is proportional to the determinant of the coefficients of equation

- (3.1, 11) which are not associated with the operator D, normally called the static-stability
determinant. Since the value of this determinant is the value of the ultimate coefficient in the
characteristic equation of equation (3.1, 11) then this determinant must be positive for static

stability.
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Equation (AI, 3) may be rewritten in the equivalent form

C ' [ - (b2l {b} 2 - b22 {b} 1) {c}'01.- * [ - (- )
dP* = -A3 er* A(AI,4)

(2 ( ) -]
d- 2C1 '-b2  C1 I'+ [c] - - {b_ {e * xUO) 6 2

where
b21 b22~

= b 2Cj,' b2 2 (Xg* -. *)
l b31  b32j

[ is the stability determinant for the rigid aeroplane. The denominator is seen to b! proportional to
the determinant discussed in Section 4.3 having a zero at the Maximum Trim Speed. Since the
Maximum Trim Speed is a terminal zero of this determinant it is one-signed up to the Maximum
Trim Speed so that it is clear that for static stability we require

(LP* <0.

ii The presence of built-in camber plays an important part in the variation of dP*/dC,' through the
presence of the column {b}, in equation (Al, 4) (see also Ref. 21).

4.
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'ABLE I

¢'. (,General Specification

"* .- Parameter Reference Value Remarks

:11 "  6 at 40,000 ft mn *(X) = r (2 -,y X -2 ) (A)
i , ,,t=? ,f.*

-,.*(x*) (1 + 9 v*- 25x* -+ 20x ' - 5.v ) ( 1 )

11.1* 3-5 at 40,000 ft =
A ll.' k 0 " 2 3 9

k.~qx* 2 Radii of gyration about c.g.

0.218

Aspect Ratio 1.0!q.'Sr* S" = , "(-"*) 4 1 x-,.)

, c.g. Margin 0-023 . . . (xr - ? ) = -

. •0 IWeight-Stiffness Parameter

C, cruising 0.05 11 = 2 at 40,000 ft

Landing Speed 125 m.p.h. C1, Ina x 1 0

Wing loading 55 lb/ft2  Assuming
".',, /1 200 ft

\Ving Area 10,000 ft2  0

A.U.W. 550,000 lb

C"= 8CI,' Relation betw~een coefficients based on pV'2S and
etc. p ,"21/2 respectively.

It 1ICr*= Ch' El

-, -=. C1'1. '*){%
',,0

0-4~

•-, V-

Normolised mass distributions

, * I 
.... . .

' '' 6 54 3 2 0
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.O ._j

'TAIBLE 2

Symmetrical Matrix of Infliuence Coefficients for Delta I I iqn Cantile-(, ed at T/ aihing l"c,,e

0 0 0 0 0 0

0.00161219 0.00406753 0.00652287 0.00897921 0-01143355 0.01388889

001354005 002404392 003454780 004505168 005555556

004828679 007385786 009942893 0. 125000()0

012206803 017214513 022222222

0-2.58104413 0* 34722222

'TABLE 3

Matrix of Influence Coeficients for Attached Axes at Trailing Edge of Delta I ing

0 0 0 0 0 0 o

IN 0'0070730 -0"0010248 -0"0006913 -0"0003577 -0"0000241 0.0003094 0"0006430

0'0514403 -0'0073356 -0'0120618 -0"0064743 -0.0008869 0"0047006 0.0102881

? ' 0"1562500 -0"0042157 -0'0546996 -0"0379654 -0.0079491 0"0220671 0.0520833
0.3292181 +0'0211950 -0'1209143 -0.1256189 -0"0413224 0"0616433 0.1646091 x 10

0'5626286 +0'0714685 -0.1978457 -0"2595687 -0.1379023 0"1161952 0"4018776

p 0.8333333 +0.1388889 -0.2777778 -0.4166667 -0-2777778 0.1388889 0.8333333

TABLE 4

IMatrix of Ifluence Coefficients for Mean Axes at Trailing Edge of Della I 'ing

(Mass Distribution A)

1 1.046366 +0'166566 -0"396318 -0"525533 -0"269922 -F0"22645,3 +0"08271

+0"041491 +0-052128 -0"017616 -O0077264 -0.060916 +0"023401 +0. 135921

-0_590442 -0115168 +0"254293 +0"313415 +0.139705 -0"138839 -0"446409

-0617951 -0188158 +0213530 +0450351 +0.278330 -0171325 -0707236 x 10 2

+0"036124 -0038240 -0.063002 +0.025661 +0.153846 +0.001829 -0"260760

+1"294623 +0"360306 -0.446701 -0"861991 -0.602705 +0-357653 +1-433145

+2.926065 +0-930321 -0.860407 -1.981125 -1.792212 +0.378439 +5-068922
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X'U

q

Refernce ectio ~ ~Attachedl axes at trailing edge

S x)Z,w z

Linear velocities u,v: steady-state velocity V,
'Ph. Angular velocity q

Farces X, Z; aerodynamic loading LQs)

Control force P

Moment Q

z Bending deflection r(e)

I-" IG. 1. Typical slender configuration. FIG. 2. Typical slender configuration.

-- --- - -

P* (D

Low-spccd camber shope

FIG. 3. Trim curves for uncamnbered acroplane.

52



~,.i .r.;s

0-6

0.5

-04

L104 I

FIG. 4. Conf Cogur ation tmaiumtrmsed

- - -

-0-5

FIG. 4. Cofguain tmaiu0ti se

+-00

K.0

-0001

Mass

A4 aPQ'

as$ .i

PO tt-53

-0-0-

-0-0041a

-00051 1



-,~~~~~ . -- . - k -

Collocation point

-'4.

0.

00

V.;1

Bending

C COICC~t~n -deflection

C:

-a ~ C

Fi. 6b. onfiguratonatin lpolignt asdstiuinH
Fia-b ofgrto nlvl lgtiasdsrbto 3

54

*~1



_~~ 25 ,, -. -. ,,, ,: , . . , { - .2 . . . . . - --. . . .--. . . . . . .." ' '

,0-20-

0' 0.1 1

.3. . •

0.10

0.05
I I

0 0.05 0.10 0 ,15 0 .ko 0.5 0 30 0.35

CL

FIG. 7. Incidence in level flight.

55 I

4,N .

ko



/-0.8

0

0.6

4. Mode f ds 0.6

1 3-970 1-24 1.0
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.. *.~3 32-36 10-Z

wil. FIG. 8a. Normal modes-mass distribution A.
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'~ I FIG. 8b. Normal modes-mass distribution B.
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